
OpenQL

QuTech, TU Delft

May 27, 2021

USER MANUAL

1 How to read the documentation 3
1.1 Concepts . 3
1.2 Installation . 6
1.3 Creating your first program . 7
1.4 Simulation using QX . 10
1.5 DQCsim Simulation . 14
1.6 Where to go from here . 17
1.7 Python API . 17
1.8 C++ API . 69
1.9 Configuration . 71
1.10 Supported architectures . 77
1.11 Supported global options . 127
1.12 Supported passes . 133
1.13 Supported resources . 155
1.14 Where to begin . 166
1.15 Build instructions . 167
1.16 Build automation . 172
1.17 Release procedure . 173
1.18 C++ coding conventions . 174
1.19 Doxygen documentation . 189
1.20 Changelog . 189
1.21 Contributors . 198
1.22 Program . 200
1.23 Kernel . 201
1.24 Quantum Gates . 205
1.25 Classical Instructions . 210
1.26 Platforms and architectures . 214
1.27 Compiler . 215
1.28 Compiler Passes . 217

2 Indices and tables 243

Python Module Index 245

Index 247

i

ii

OpenQL

OpenQL is a framework for high-level quantum programming in C++/Python. The framework provides a compiler for
compiling and optimizing quantum code. Compared to competing frameworks, such as Qiskit, OpenQL’s focus lies
more on retargetability and compiling all the way down to assembly code for the various control (micro)architectures
used by QuTech, and less on high-level constructs such as circuit conjugation: in general, the input you provide is a
complete circuit and a platform description, and the output is an equivalent circuit that complies to platform constraints
and/or machine code for running that circuit on a real quantum computer.

USER MANUAL 1

OpenQL

2 USER MANUAL

CHAPTER

ONE

HOW TO READ THE DOCUMENTATION

The documentation is roughly split into three main parts:

• the user manual;

• the user reference; and

• the developer documentation.

The user manual portion is intended to be read like a book, to give new users an overview of how to use OpenQL
and build intuition for what does what. It culminates in a few tutorials that take you from a basic algorithm all the
way to simulation of the compiled algorithm. The reference may then be used for more exhaustive information about
particular topics of interest to you, such as particular API functions, passes, architectures, and so on. Note that most
of the contents of the reference section are also available from within Python using the various dump_*() functions;
this document only provides a more pleasingly laid-out version of the same information.

The developer documentation is only intended for (new) contributors. That is to say: unless you’re intending to
understand or change OpenQL’s internal C++ implementation, the information here is not relevant to you. Rather, the
section provides an overview of the codebase and the conventions used, and includes internal interface documentation
as generated by Doxygen. Note however, that the intention is that the code is “self-documenting,” in the sense that
the relevant documentation is placed inside the code as long comment blocks, to incentivize keeping the code and
documentation synchronized. Ideally this would all be generated into the Doxygen documentation, but not everything
has been converted to Doxygen-recognized docstrings yet.

1.1 Concepts

This section goes over some key concepts that you should understand before doing anything with OpenQL.

1.1.1 OpenQL versus other compilers

A key difference between the OpenQL compiler and traditional compilers is that OpenQL is a library rather than an
application. That means that you can’t just invoke OpenQL on the command line given some input file. Instead, your
input file is (usually) a Python script that imports the OpenQL module, builds a representation of the algorithm that
OpenQL understands as it runs, and eventually tells OpenQL to compile that algorithm representation somehow. The
output of the compilation process is then usually written to output files, though the behavior of the compiler depends
entirely on its configuration.

Also different compared to most compilers is that OpenQL is inherently retargetable. Whereas with for instance gcc
the target architecture is built right into it, with OpenQL you can compile code for many different kinds of control
architectures and quantum devices. This target architecture is described via the platform configuration structure.

3

OpenQL

1.1.2 Platform configuration

In OpenQL, the platform configuration is what determines what quantum device and control architecture will be
compiled for, also known as the compilation target. It ultimately defines the subset of describable quantum circuits
that can actually be executed on the target by way of a set of constraints and reduction rules. Here are some examples
of things described in the structure.

• The primitive instruction set, along with decomposition rules for common gates that cannot be directly repre-
sented.

• The number of usable qubits within the device and their connectivity.

• Control and instrument constraints on available gate parallelism.

The goal for the compiler is to take the user-specified algorithm and convert it to a behaviorally equivalent circuit
within this set, preferably the most optimal one it can find.

As of version 0.9, OpenQL has a bunch of default target descriptions built into it. You can use them directly if they’re
good enough for your use case, or you can use them as a baseline for making your own. The complete configuration
structure is defined here.

1.1.3 Quantum algorithm representation

Note: This is not a description of the current implementation of the intermediate representation of the compiler, but
rather an overview of what it behaves like from a user perspective.

OpenQL models a quantum algorithm as follows:

• a complete algorithm is referred to as a program;

• a program consists of one or more kernels; and

• each kernel consists of one or more “statically-scheduled” gates (a.k.a. instructions) without control-flow within
the kernel.

Typically, most of the Python or C++ program using the OpenQL compiler consists of building an algorithm using
this model, although it’s also possible to build it from a cQASM file using the cQASM reader pass.

Depending on your background, “static,” “scheduled,” and “control-flow” may require further explanation.

• “Static” just means “known by the compiler,” or equivalently, “not dependent on information only known at
runtime.” In the world of quantum computing, this typically just means “not dependent on measurement results.”

• The “schedule” is what defines when a gate is applied, in this context relative to the start of the kernel. So,
“statically-scheduled” means that (if a gate is applied) that gate must always be applied at the same time with
respect to the start of the kernel.

• “Control-flow” is almost anything to do with conditional statements (like if) and loops. More formally, any-
thing that results in a classical branch instruction is considered to be control-flow. Note that OpenQL also
supports a special case for if-like constructs called conditional gate execution that does not rely on control-
flow; we’ll get to that.

The result of the above is that a kernel behaves just like how you would traditionally draw a quantum circuit, with time
on the X-axis and the qubits and classical bits on the Y-axis in the form of horizontal lines.

More complex algorithms that include control-flow can be specified using multiple kernels. Say, for instance, that you
have an initialization circuit, then a circuit that you want to repeat until some qubit measures as 1, followed by a circuit
that does some final measurements. The first and last circuit would then be added to the program as a normal kernel,
while the second would be added as a do-while kernel.

4 Chapter 1. How to read the documentation

OpenQL

Warning: Most architectures and parts of OpenQL don’t fully support nonstandard kernel types yet. Some
(mapping) don’t support multiple kernels in any form. For now, you have to check the documentation of the passes
used by the particular compiler configuration that you intend to use to see what’s supported and what isn’t.

Control-flow based on measurement results tends to be a costly operation in most architectures, because the time from
sending a measurement gate to the instruments to being able to act on the measurement result tends to be quite long
compared to the coherence time of NISQ-era qubits. However, sometimes part of this pipeline can be avoided. Say,
for instance, that you want to apply an X gate on some qubit only if some other qubit measured as 1. If the instruments
themselves (or at least a deeper part of the control architecture) are capable of turning an X gate into an identity/no-op
gate based on a measurement, this and subsequent gates can already be queued up before the measurement has actually
taken place. This is the conditional gate execution we alluded to earlier. Using this scheme, the condition for whether
the gate is executed or not is encoded as part of the gate, instead of being part of the program’s control-flow.

1.1.4 Gate representation

Gates in OpenQL fundamentally consist of a name, some set of operands, and a condition. The gate names available
for use are defined within the platform configuration file, along with some of their semantics, such as the gate duration.

Warning: As of version 0.9, OpenQL also still assigns semantics and makes assumptions based on the name
of a gate however. For example, an x gate is assumed to commute with an x90 gate, and both are assumed to
have a single qubit operand and nothing else, or things will probably break. This behavior is unfortunately largely
undocumented, so you’ll have to search through the code for it. Obviously this is not an ideal situation, and thus
this is something that we want to get rid of. All semantics needed by OpenQL should, down the line, be specified
in the platform configuration, or, for backward compatibility, be inferred from the gate name in a documented way.

The operand set for each gate consists of the following:

• zero or more qubit operands;

• zero or more creg operands;

• zero or more breg operands;

• zero or one literal integer operand*; and

• zero or one angle operand.

Here, “cregs” refer to classical integer registers, and “bregs” refer to classical bit registers. The former are used for
loops and other control flow, while the latter are used for conditional execution.

Finally, the gate’s condition consists of a boolean function applied to zero, one, or two bregs. Unconditional gates are
simply modelled using a unit-one boolean function acting on zero bregs.

1.1.5 Configuring the compilation process

We’ve now described the way in which you specify the input and the target for the compiler, but there’s one more thing
OpenQL must know: how to compile for the given target. This is also known as the compilation strategy. When the
strategy is incorrect or insufficient, the resulting circuits may not actually be completely valid for the target, unless the
incoming algorithm is carefully written such that constraints not dealt with by OpenQL have already been met.

Generally, the compilation process consists of the following steps:

• decomposition;

1.1. Concepts 5

OpenQL

• optimization;

• mapping;

• scheduling; and

• code generation.

Decomposition is the act of converting gates that cannot be executed using a single instruction in the target gateset into
a list of gates that have the same behavior. For example, a SWAP gate may be decomposed into three CNOT gates.

Optimization tries to reduce the algorithm to a more compact form. This is particularly relevant after decomposition,
as the decomposition rules may lead to sequences of gates that trivially cancel each other out.

Mapping is the act of changing the qubit indices in the circuit such that the connectivity constraints of the target device
are met. For complex circuits, no single mapping will suffice (or it may be too time-consuming to compute, as this is
an NP problem); in this case, SWAP gates will be inserted to route non-nearest-neighbor qubits toward each other.

Scheduling is the act of assigning cycle numbers to each gate in a kernel. This can of course be done trivially by
assigning monotonously increasing cycle numbers to each gate in the order in which they were written by the user, but
this is highly inefficient; instead, heuristics and commutation rules are used to try to find a more optimal solution that
makes efficient use of the parallelism provided by the control architecture.

Finally, code generation takes the completed program and converts it to the assembly or machine-code format that the
architecture-specific tools expect at their input.

A strategy consists of a list of passes, along with pass-specific configuration options for each pass. OpenQL provides
default pass lists for the available architectures, as listed in the architecture reference. You can modify this default
strategy using API calls prior to compilation if need be, or you can override the defaults entirely by writing a compiler
configuration file.

1.2 Installation

OpenQL is available from PyPI as a pre-built package for Windows, MacOS, and Linux for all active Python 3.x
versions. Once you have Python and have access to a command line you can get it as follows:

pip install qutechopenql

after which you should be able to run

python -c 'import openql; print(openql.get_version())'

to see if it works.

Note: Depending on your OS and Python configuration, you may need to use python3 instead of just python to
disambiguate with a Python 2.7 installation, and/or use pip3 or python -m pip instead of just pip. You may
also need to add --user at the end of the pip command to avoid permission problems. If you’re unsure of what all
of the above means, first read up on how Python and pip work on your operating system in the relevant Python (or
Linux distribution) documentation; installation of Python packages is rather fundamental to Python and out of scope
for this manual.

Warning: The documentation you’re reading now is generated for version 0.9.0. If there is a mismatch, be aware
that there may be an API mismatch as well! The reference information can, however, be queried from within
Python using the help() builtin and (from 0.8.1.dev6 onwards) using the various dump_*() functions.

6 Chapter 1. How to read the documentation

OpenQL

If you’re on MacOS and want to use the visualizer, you’ll need XQuartz in addition. You can install this using Brew.

Some of OpenQL’s components are optional when OpenQL itself is compiled. In general, the pre-built package
includes everything, except for initial placement due to a license conflict. If you need initial placement, you’ll need to
compile manually.

OpenQL used to support Conda in addition to PyPI/pip for Python package management, but ultimately this was
disabled due to excessive time spent on dependency resolution. Nevertheless, the Conda recipe is still available, so it
may or may not work, but for this you’ll also have to compile manually, as the prebuilt Conda packages are likely out
of date.

1.3 Creating your first program

In the OpenQL framework, the quantum Program, its Kernels, and its gates are created using API calls contained
in a C++ or Python 3 program. You then run this program in order to compile the quantum program. In the manual,
we’ll use Python exclusively, but the API is largely identical in C++.

You can set up Python however you like; via a Jupyter/IPython notebook, a Python file created in a text editor that
you then run, various Python IDEs like IDLE, and so on. Just make sure that OpenQL is actually installed for the
interpreter that your preferred environment uses.

The very first step is to import the OpenQL module:

import openql as ql

Note: In versions before 0.9, you had to use the more verbose from openql import openql as ql syntax.
This is still supported for backward compatibility, but is deprecated.

Next, you should call the initialize() function:

ql.initialize()

This function ensures that OpenQL is (re)initialized to its default configuration. This is especially important in the
context of a test suite or IPython notebook, where one might want to do multiple compilation runs in a single Python
instance. For backward compatibility, OpenQL will automatically call this function when you first use a dependent
API function, warning you as it does.

After initialization, you may want to change some of OpenQL’s global options. One of the important ones is
output_dir, which is used to specify which directory the compiler’s output will be placed in. If you don’t set
it, OpenQL will default to outputting to a test_output directory within the current working directory. Another
important one is log_level, which sets the verbosity of OpenQL’s logging; if you don’t set that one, you won’t see
any log messages, at least until something has already gone horribly wrong.

ql.set_option('output_dir', 'output')
ql.set_option('log_level', 'LOG_INFO')

Note: OpenQL will automatically recursively create directories whenever it tries to write a file. Thus, you don’t have
to manually create the output directory.

Note: As of version 0.9, you can also opt to use the more powerful, but slightly more complicated Compiler
API to set options and manipulate the compilation strategy. Since version 0.9, almost all of the global options have
no effect other than manipulating the default compilation strategy and pass options. You can obtain a reference

1.3. Creating your first program 7

https://formulae.brew.sh/cask/xquartz

OpenQL

to the Compiler object used by a Platform or Program using the get_compiler() method, or you can
construct a Compiler manually and use its compile() function to compile the program (rather than program.
compile()).

Before you can start building a quantum program, you must create a Platform object. One of its constructor
parameters is either the name of the architecture you want to compile for, a reference to a platform configuration file,
or (via the from_json() constructor) a JSON object specified by way of Python dictionaries, lists, strings, integers,
and booleans with the same structure as the platform configuration file. The platform configuration is consulted by the
APIs creating the program, kernels, and gates, to generate the matching internal representation of each gate.

For now, let’s use the “none” architecture:

platform = ql.Platform('my_platform', 'none')

This is a basic architecture that is most useful for simulating with QX. The first argument is only used to identify the
platform in error messages; you can set it to whatever you like.

After creating the platform, the program and its Kernels may be created. The program and kernel constructors
take the program/kernel name, the associated platform, and the number of qubits used in it as parameters. We’ll use 3
in this example:

nqubits = 3
program = ql.Program('my_program', platform, nqubits)
kernel = ql.Kernel('my_kernel', platform, nqubits)

When needed, the number of used CRegs (classical integer registers) and BRegs (bit registers) used by the pro-
gram/kernel must also be specified, but we don’t use these for now.

Again, the first argument is just a name. However, unlike for the platform, the name is actually used. Specifically, the
program name is used as a prefix for the output files, and the kernel names are used in various places where a unique
name is needed (thus, they must actually be unique).

Once you have a kernel, you can add gates to it:

for i in range(nqubits):
kernel.prepz(i)

kernel.x(0)
kernel.h(1)
kernel.cz(2, 0)
kernel.measure(0)
kernel.measure(1)

Most gates have a shorthand function, as used above. However, some architecture-specific gates might not, or might
need additional arguments. For these cases, the gate() method can be used.

Note: You can only add gates that are registered via the instruction set definition in the platform configuration
structure, or for which a decomposition rule exists. If a gate doesn’t exist there, you will immediately get an exception.
In future versions, this exception may be delayed to when you call compile().

When you’re done adding gates to a kernel, you can add the kernel to the program using add_kernel():

program.add_kernel(kernel)

Note: The number of qubits, CRegs, and BRegs used by a kernel must be less than or equal to the number used by

8 Chapter 1. How to read the documentation

OpenQL

the program, and the number for the program must be less than or equal to what the number available in the platform.
Also, a kernel can only be added to a program when the kernel and program were constructed using the same platform.

Finally, when you have completed the program, you can compile it using the compile() <openql.Program.
compile() function:

program.compile()

Here’s the completed program, taken from examples/simple.py:

import openql as ql

ql.initialize()

ql.set_option('output_dir', 'output')
ql.set_option('log_level', 'LOG_INFO')

platform = ql.Platform('my_platform', 'none')

nqubits = 3
program = ql.Program('my_program', platform, nqubits)
kernel = ql.Kernel('my_kernel', platform, nqubits)

for i in range(nqubits):
kernel.prepz(i)

kernel.x(0)
kernel.hadamard(1)
kernel.cz(2, 0)
kernel.measure(0)
kernel.measure(1)

program.add_kernel(kernel)

program.compile()

When you run this file with Python, two files will be generated in the output directory: my_program.qasm and
my_program_scheduled.qasm. The first look like this:

version 1.0
this file has been automatically generated by the OpenQL compiler please do not
→˓modify it manually.
qubits 3

.my_kernel
prep_z q[0]
prep_z q[1]
prep_z q[2]
x q[0]
h q[1]
cz q[2],q[0]
measure q[0]
measure q[1]

This file is generated by a cQASM writer pass before anything else is done. As you can see, it contains exactly what
was generated by the Python program, but in cQASM 1.0 format.

The second is a little more interesting:

1.3. Creating your first program 9

https://libqasm.readthedocs.io/en/latest/cq1-structure.html

OpenQL

version 1.0
this file has been automatically generated by the OpenQL compiler please do not
→˓modify it manually.
qubits 3

.my_kernel
prep_z q[0]
wait 1
{ prep_z q[2] | x q[0] }
wait 1
{ prep_z q[1] | cz q[2],q[0] }
wait 1
h q[1]
wait 1
{ measure q[0] | measure q[1] }
wait 14

It is generated after basic ALAP (as late as possible) scheduling, using the (rather arbitrary) instruction durations
specified in the default platform configuration file for the “none” architecture.

Depending on the architecture and compiler configuration, different output files may be generated. The above only
applies because of the default pass list doe the “none” architecture: a cQASM writer, followed by a scheduler, followed
by another cQASM writer. This is fully configurable.

1.4 Simulation using QX

This tutorial explains how to compile an OpenQL program and execute it on QX. We will use the example of rolling
an 8-faced dice. Rolling this dice results in 1 out of 8 outcomes. The complete code for this example is available in
examples/dice.py. You can also copy the snippits over to your own script as we walk through it.

We start by importing openql, qxelerator and some python packages. We also set some options for openql. For this
example we will be using 3 qubits. All this is done by the following code snippet:

10 Chapter 1. How to read the documentation

OpenQL

from openql import openql as ql
import qxelarator
from functools import reduce
import os
import matplotlib.pyplot as plt

ql.set_option('output_dir', 'output')
ql.set_option('log_level', 'LOG_INFO')

nqubits = 3

Next, we create a platform, a program and a kernel. We populate the kernel with 3 hadamard gates being applied on
each qubits. This will put each qubit in superposition. Measuring each qubit will collapse the state resulting in getting
either 0 or 1. This is done by dice_compile() as shown below:

def dice_compile():
platform = ql.Platform('myPlatform', 'none')
p = ql.Program('dice', platform, nqubits)
k = ql.Kernel('aKernel', platform, nqubits)

for q in range(nqubits):
k.gate('h', [q])

for q in range(nqubits):
k.gate('measure', [q])

p.add_kernel(k)
p.compile()

Compiling the above code snippet will produce the following quantum assembly code in cQASM 1.0 format:

• output/dice.qasm, the generated un-scheduled cQASM code; and

• output/dice_scheduled.qasm, the generated cQASM code after scheduling.

For instance, dice.qasm contents are shown below:

version 1.0
this file has been automatically generated by the OpenQL compiler please do not
→˓modify it manually.
qubits 3

.aKernel
h q[0]
h q[1]
h q[2]
measure q[0]
measure q[1]
measure q[2]

These cQASM codes can be simulated on QX simulator. For this we are using the simplified python interface to QX
known as QXelarator. This is done by the following code snippet:

def dice_execute_singleshot():
print('executing 8-face dice program on qxelarator')
qx = qxelarator.QX()

set the qasm to be executed

(continues on next page)

1.4. Simulation using QX 11

https://libqasm.readthedocs.io/en/latest/cq1-structure.html
https://github.com/QE-Lab/qx-simulator
https://github.com/QE-Lab/qx-simulator/tree/develop/#qxelarator-qx-as-a-quantum-accelerator

OpenQL

(continued from previous page)

qx.set('output/dice.qasm')

execute the qasm
qx.execute()

get the measurement results
res = [int(qx.get_measurement_outcome(q)) for q in range(nqubits)]

convert the measurement results from 3 qubits to dice face value
dice_face = reduce(lambda x, y: 2*x+y, res, 0) + 1
print('Dice face : {}'.format(dice_face))

Running dice.py will produce output as shown below:

Dice face : 2

where the Dice face can be any number between 1 and 8.

Next we can also roll the dice 100000 times and plot the frequency of occurance of each face by the following code
snippet:

def plot_histogram(dice_faces):
plt.hist(dice_faces, bins=8, color='#0504aa',alpha=0.7, rwidth=0.85)
plt.grid(axis='y', alpha=0.75)
plt.xlabel('Dice Face',fontsize=15)
plt.ylabel('Frequency',fontsize=15)
plt.xticks(fontsize=15)
plt.yticks(fontsize=15)
plt.ylabel('Frequency',fontsize=15)
plt.title('Histogram',fontsize=15)
plt.show()
plt.savefig('hist.png')

def dice_execute_multishot():
print('executing 8-face dice program on qxelarator')
qx = qxelarator.QX()
qx.set('output/dice.qasm')
dice_faces = []
ntests = 100
for i in range(ntests):

qx.execute()
res = [int(qx.get_measurement_outcome(q)) for q in range(nqubits)]
dice_face = reduce(lambda x, y: 2*x+y, res, 0) +1
dice_faces.append(dice_face)

plot_histogram(dice_faces)

This will produce the histogram similar to the one shown below:

12 Chapter 1. How to read the documentation

OpenQL

1.4. Simulation using QX 13

OpenQL

1.5 DQCsim Simulation

This tutorial modifies the QX simulation tutorial to use DQCsim. In short, DQCsim is a framework that allows
simulations to be constructed by chaining plugins operating on a stream of gates and measurement results, thus making
it easier to play around with error models, gather runtime statistics, and connect different quantum simulators to
different algorithm file formats. In this tutorial, we will use it to simulate the toy example modelling an 8-faced die
with QX and QuantumSim’s error models.

Note that DQCsim currently does not work on Windows. If you’re using a Windows workstation, you’ll need to work
in a virtual machine or on a Linux server.

1.5.1 Dependencies

DQCsim and the plugins we’ll be using can be installed using pip as follows:

python -m pip install dqcsim dqcsim-qx dqcsim-quantumsim dqcsim-cqasm

You’ll probably need to prefix sudo to make that work, and depending on your Linux distribution you may need to
substitute python3. If you don’t have superuser access, you can add the --user flag, but you’ll need to make sure
that DQCsim’s executables are in your system path. The easiest way to do that is figure out the path using python
-m pip uninstall dqcsim, observe the directory that the bin/dqcsim file lives in, and add that to your path
using export PATH=$PATH:..., replacing the ... with the listed path from / to bin.

We’ll also need to add some modules to the Python file from the QX die example:

from dqcsim.host import *
import shutil

1.5.2 Replicating the QXelarator results

The results we got when using QX directly are pretty easy to replicate. Here’s how:

def dice_execute_singleshot():
print('executing 8-face dice program on DQCsim using QX')

DQCsim disambiguates between input file formats based on file extension.
.qasm is already in use for OpenQASM files, so DQCsim uses .cq for cQASM
shutil.copyfile('output/dice.qasm', 'output/dice.cq')

open the simulation context and run the simulation. the cQASM frontend
returns the results as a JSON object for us to parse througn run()
with Simulator('output/dice.cq', 'qx') as sim:

results = sim.run()

parse the measurement results
res = [results['qubits'][q]['value'] for q in range(nqubits)]

convert the measurement results from 3 qubits to dice face value
dice_face = reduce(lambda x, y: 2*x+y, res, 0) +1
print('Dice face : {}'.format(dice_face))

The key is the Simulator('test_output/dice.cq', 'qx') expression wrapped in the with block, which
constructs a DQCsim simulation using the cq frontend (based on the file extension, that’s why we have to make a
copy and rename OpenQL’s output first) and the qx backend, wrapping the libqasm cQASM parser and QX’s internals
respectively.

14 Chapter 1. How to read the documentation

https://qe-lab.github.io/dqcsim/

OpenQL

1.5.3 Enabling QX’s depolarizing channel error model

While not exactly useful for this particular algorithm, we can use DQCsim to enable QX’s error model without having
to edit the cQASM file. The easiest way to do that is to add a line before sim.run() to form

with Simulator('test_output/dice.cq', 'qx') as sim:
sim.arb('back', 'qx', 'error', model='depolarizing_channel', error_probability=0.

→˓2)
results = sim.run()

This requires some explanation. The sim.arb() function (docs here) instructs DQCsim to send a so-called ArbCmd
(short for “arbitrary command”) to one of its plugins. In short, ArbCmds are DQCsim’s way to let its users commu-
nicate intent between plugins, without DQCsim itself needing to know what’s going on. DQCsim has no concept of
error models and the likes built-in, so we need to use ArbCmds to configure them.

Its first argument specifies the plugin that the ArbCmd is intended for, where 'back' is simply the default name for
the backend plugin. You could also use the integer 1 to select the second plugin from the front, or -1 to select the first
plugin from the back, as if it’s indexing a Python list.

The second and third argument specify the interface and operation identifiers respectively. The interface identifier
is usually just the name of the plugin, acting like a namespace or the name of a class, while the operation identifier
specifies what to do, acting as a function or method name. You’ll have to read the plugin documentation to see which
interface/operation pairs are supported. Usually these are listed in the form <interface>.<operation>, as if
we’re using a parameter named <operation> from a class named <interface>.

Note that the semantics of ArbCmds are defined such that plugins will happily ignore any ArbCmd specifying an
interface they don’t support, but will complain when they support the interface but don’t understand the operation.
More information and the rationale for this can be found here.

Any remaining arguments are interpreted as arguments. Specifically, keyword arguments are transformed
into the keys and values of a JSON object, in this case {"model": "depolarizing_channel",
"error_probability": 0.2}. Positional arguments are interpreted as binary strings, but those are out of
the scope of this tutorial (they’re not that relevant in the Python world). Again, you’ll have to read the plugin docu-
mentation to see what arguments are expected.

You won’t be able to see much in the result of the algorithm, because it was already purely random. But you may notice
that the log output of DQCsim now includes a Depolarizing channel model inserted . . . errors from the backend.

1.5.4 Using QuantumSim instead

More interesting in terms of DQCsim’s functionality is just how easy it is to change the simulator. All you have
to do to simulate using QuantumSim instead of QX is change the 'qx' in the Simulation constructor with
'quantumsim'.

While QuantumSim is capable of much more, its DQCsim plugin currently only supports a qubit error model based
on t1/t2 times. The arb for that, along with the modified Simulator constructor, looks like this:

with Simulator('test_output/dice.cq', 'quantumsim') as sim:
sim.arb('back', 'quantumsim', 'error', t1=10.0, t2=20.0)
results = sim.run()

For that to have any merit whatsoever, you’ll have to modify the code such that we’re at least simulating OpenQL’s
scheduled output, because it’s based entirely on the timing of the circuit:

shutil.copyfile('output/dice_scheduled.qasm', 'output/dice.cq')

1.5. DQCsim Simulation 15

https://qe-lab.github.io/dqcsim/py_/dqcsim/host/index.html#dqcsim.host.Simulator.arb
https://github.com/QE-Lab/dqcsim-qx
https://qe-lab.github.io/dqcsim/intro/arbs.html
https://github.com/jvanstraten/dqcsim-quantumsim

OpenQL

One thing the QuantumSim plugin does that the QX plugin doesn’t is report the actual probability of a qubit measure-
ment result. The results variable looks like this:

{
"qubits": [
{

"value": 0,
"raw": 0,
"average": 0.0,
"json": {"probability": 0.5},
"binary": [[0, 0, 0, 0, 0, 0, 224, 63]]

},
{

"value": 0,
"raw": 0,
"average": 0.0,
"json": {"probability": 0.5},
"binary": [[0, 0, 0, 0, 0, 0, 224, 63]]

},
{

"value": 0,
"raw": 0,
"average": 0.0,
"json": {"probability": 0.5},
"binary": [[0, 0, 0, 0, 0, 0, 224, 63]]

}
]

}

In particular, the "json" parameter lists data that the cQASM frontend received from the backend but doesn’t know
about, in this case showing that the probability for this outcome was exactly 0.5 for each of the three individual
measurements.

1.5.5 Further reading

A more extensive Python tutorial for DQCsim can be found here. It (intentionally) does not depend on any of the
plugins and doesn’t use OpenQL, but hopefully the above illustrates that swapping out plugins is about the easiest
thing you can do with DQCsim.

16 Chapter 1. How to read the documentation

https://qe-lab.github.io/dqcsim/python-api/index.html

OpenQL

1.6 Where to go from here

This manual is not really complete yet, but hopefully the most important things have been treated, and you can figure
out the rest from the much more complete reference. If not, you may try to read through some of the older pages.
These have not yet been updated for version 0.9, but may still provide useful background information.

1.7 Python API

To use OpenQL from Python, you need to install the qutechopenql module using pip, and then

import openql as ql

Note: It used to be necessary to use import openql.openql as ql. This is still supported for backward
compatibility.

The typical usage pattern for OpenQL is as follows:

• call initialize() to initialize the OpenQL library and clean up any leftovers from compiling a previous
program;

• set some global options with set_option();

• build a Platform;

• build a Program using the platform;

• build one or more Kernel s using the platform, and add them to the program with add_kernel();

• compile the program with compile().

Note: The initialize() didn’t use to exist. Therefore, for backward compatibility, it is called automatically by
the constructor of Platform, the constructor of Compiler, or by set_option() if it has not been called yet
within this Python interpreter.

Warning: Calling Program.compile() or Compiler.compile() multiple times on the same program is
currently not a supported use case: the compile() function mutates the contents of the program as compilation
progresses. There are currently no API methods on Program or Kernel to read back the compilation result,
but these may be added in the future. Therefore, if you want to compile a program multiple times, you’ll have to
rebuild the program from scratch each time.

For more advanced usage of the OpenQL compiler, the default compilation strategy might not be good enough, or the
global options may be too restrictive for what you want. For this reason, the Compiler interface was recently added.
The easiest way to make use of it is through Platform.get_compiler() or Program.get_compiler();
this returns a reference that allows you to change the default compilation strategy or set options for particular passes.
Once you do this, however, any changes made to global options will cease to have an effect on that particular Plat-
form/Program/Compiler triplet; you must use Compiler.set_option() and friends from that point onwards.
Note that the names of the options in this interface have been revised compared to the global options, so you can’t just
replace a global set_option() with a Compiler.set_option() without a bit of work.

1.6. Where to go from here 17

OpenQL

1.7.1 Index

Regular functions

initialize() Initializes the OpenQL library, for as far as this must be
done.

ensure_initialized() Calls initialize() if it hasn’t been called yet.
get_version() Returns the compiler’s version string.
set_option(option, value) Sets a global option for the compiler.
get_option(option) Returns the current value for a global option.

Classes

Platform(*args) Quantum platform description.
Program(name, platform[, qubit_count, . . .]) Represents a complete quantum program.
Kernel(name, platform[, qubit_count, . . .]) Represents a kernel of a quantum program, a.k.a.
CReg(id) Wrapper for a classical integer register with the given

index.
Operation(*args) Wrapper for a classical operation.
Unitary(name, matrix) Unitary matrix interface.
Compiler(*args) Wrapper for the compiler/pass manager.
Pass() Wrapper for a pass that belongs to some pass manager.
cQasmReader(*args) cQASM reader interface.

Documentation retrieval functions

print_options() Prints the documentation for all available global op-
tions.

dump_options() Returns the result of print_options() as a string.
print_architectures() Prints the documentation for all available target archi-

tectures.
dump_architectures() Returns the result of print_architectures() as a string.
print_passes() Prints the documentation for all available passes.
dump_passes() Returns the result of print_passes() as a string.
print_resources() Prints the documentation for all available scheduler re-

sources.
dump_resources() Returns the result of print_resources() as a string.
print_platform_docs() Prints the documentation for platform configuration

files.
dump_platform_docs() Returns the result of print_platform_docs() as a string.

18 Chapter 1. How to read the documentation

OpenQL

1.7.2 Platform class

class openql.Platform(*args)
Quantum platform description. This describes everything that the compiler needs to know about the target
quantum chip, instruments, etc. Platforms are created from either the default configuration for a particular
architecture variant or from JSON (+ comments) configuration files: there is no way to modify a platform using
the API, and introspection is limited. Instead, if you want to use a custom configuration, you will need to write
a JSON configuration file for it, or use get_platform_json() and from_json() to modify an existing one from
within Python.

The syntax of the platform configuration file is too extensive to describe here. It has its own section in the
manual.

In addition to the platform itself, the Platform object provides an interface for obtaining a Compiler object. This
object describes the strategy for transforming the quantum algorithm to something that can be executed on the
device described by the platform. You can think of the difference between them as the difference between a verb
and a noun: the platform describes something that just exists, while the compilation strategy describes how to
get there.

The (initial) strategy can be set using a separate configuration file (compiler_config), directly from within the
platform configuration file, or one can be inferred based on the previously hardcoded defaults. Unlike the plat-
form itself however, an extensive API is available for adjusting the strategy as you see fit; just use get_compiler()
to get a reference to a Compiler object that may be used for this purpose. If you don’t do anything with the com-
piler methods and object, don’t specify the compiler_config_file parameter, and the “eqasm_compiler” key of
the platform configuration file refers to one of the previously-hardcoded compiler, a strategy will be generated
to mimic the old logic for backward compatibility.

Eight constructors are provided:

• Platform(): shorthand for Platform(‘none’, ‘none’).

• Platform(name): shorthand for Platform(name, name).

• Platform(name, platform_config): builds a platform with the given name (only used for log messages)
and platform configuration, the latter of which can be either a recognized platform name with or without
variant suffix (for example “cc” or “cc_light.s7”), or a path to a JSON configuration filename.

• Platform(name, platform_config, compiler_config): as above, but specifies a custom compiler configura-
tion file in addition.

• Platform.from_json(name, platform_config_json): instead of loading the platform JSON data from a file,
it is taken from its Python object representation (as per json.loads()/dumps()).

• Platform.from_json(name, platform_config_json, compiler_config): as above, with compiler JSON file
override.

• Platform.from_json_string(name, platform_config_json): as from_json, but loads the data from a string
rather than a Python object.

• Platform.from_json_string(name, platform_config_json, compiler_config): as from_json, but loads the
data from a string rather than a Python object.

property name
The user-given name of the platform.

property config_file
The configuration file that the platform was loaded from.

__init__(self, name: str, platform_config: str, compiler_config: str)→ Platform
__init__(self, name: str, platform_config: str)→ Platform
__init__(self, name: str)→ Platform

1.7. Python API 19

OpenQL

__init__(self)→ Platform

static from_json_string(name: str, platform_config_json: str, compiler_config: str) → Plat-
form

static from_json_string(name: str, platform_config_json: str)→ Platform
Alternative constructor. Instead of the platform JSON data being loaded from a file, they are loaded from
the given string. See also from_json().

Parameters

• name (str) – The name for the platform.

• platform_config_json (str) – The platform JSON configuration data as a string.
This will accept anything that the normal constructor accepts when it reads the configura-
tion from a file.

• compiler_config (str) – Optional compiler configuration JSON filename. This is
NOT JSON data.

Returns The constructed platform.

Return type Platform

static get_platform_json_string(platform_config: str)→ str
static get_platform_json_string()→ str

Returns the default platform configuration data as a JSON + comments string. The comments use double-
slash syntax. Note that JSON itself does not support such comments (or comments of any kind), so these
comments need to be removed from the data before the JSON data can be parsed.

Parameters platform_config (str) – The platform configuration. Same syntax as the
platform constructor, so this supports architecture names, architecture variant names, or
JSON filenames. In the latter case, this function just loads the file contents into a string
and returns it.

Returns The JSON + comments data for the given platform configuration string.

Return type str

get_qubit_number(self)→ int
Returns the number of qubits in the platform.

Parameters None –

Returns The number of qubits in the platform.

Return type int

print_info(self)→ None
Prints some basic information about the platform.

Parameters None –

Returns

Return type None

dump_info(self)→ str
Returns the result of print_info() as a string.

Parameters None –

Returns The result of print_info() as a string.

Return type str

20 Chapter 1. How to read the documentation

OpenQL

get_info(self)→ str
Old alias for dump_info(). Deprecated.

Parameters None –

Returns The result of print_info() as a string.

Return type str

has_compiler(self)→ bool
Returns whether a custom compiler configuration has been attached to this platform. When this is the
case, programs constructed from this platform will use it to implement Program.compile(), rather than
generating the compiler in-place from defaults and global options during the call.

Parameters None –

Returns Whether a custom compiler configuration has been attached to this platform.

Return type bool

get_compiler(self)→ Compiler
Returns the custom compiler configuration associated with this platform. If no such configuration exists
yet, the default one is created, attached, and returned.

Parameters None –

Returns A Compiler object that may be used to introspect or modify the compilation strategy
associated with this platform.

Return type Compiler

set_compiler(self, compiler: Compiler)→ None
Sets the compiler associated with this platform. Any programs constructed from this platform after this
call will use the given compiler.

Parameters compiler (Compiler) – The new compiler configuration.

Returns

Return type None

static from_json(name: str, platform_config_json: Dict[. . .], compiler_config: str)→ Platform
static from_json(name: str, platform_config_json: Dict[. . .]) → Platform

Alternative constructor. Instead of the platform JSON data being loaded from a file, they are loaded from
the given Python object representation of the JSON platform configuration data.

This is useful when you only need to change a builtin platform for some architecture variant a little bit. In
this case, you can get the default JSON data using get_platform_json(), introspect and modify it program-
matically, and then use this to build the platform from the modified configuration.

Parameters

• name (str) – The name for the platform.

• platform_config_json (JSON-like object) – The platform JSON configura-
tion data in Python object representation (anything accepted by json.dumps()).

• compiler_config (str) – Optional compiler configuration JSON filename. This is
NOT JSON data.

Returns The constructed platform.

Return type Platform

1.7. Python API 21

OpenQL

static get_platform_json(platform_config: str) -> Dict[...] get_platform_json()→ Dict[. . .]
Returns the default platform configuration data as the Python object representation of the JSON data (as
returned by json.loads()).

Parameters platform_config (str) – The platform configuration. Same syntax as the
platform constructor, so this supports architecture names, architecture variant names, or
JSON filenames. In the latter case, this function just parses the file contents and returns
it.

Returns The Python object representation of the JSON data corresponding to the given platform
configuration string.

Return type str

1.7.3 Program class

class openql.Program(name, platform, qubit_count=0, creg_count=0, breg_count=0)
Represents a complete quantum program.

The constructor creates a new program with the given name, using the given platform. The third, fourth, and
fifth arguments optionally specify the desired number of qubits, classical integer registers, and classical bit
registers. If not specified, the number of qubits is taken from the platform, and no classical or bit registers will
be allocated.

property name
The name given to the program by the user.

property platform
The platform associated with the program.

property qubit_count
The number of (virtual) qubits allocated for the program.

property creg_count
The number of classical integer registers allocated for the program.

property breg_count
The number of classical bit registers allocated for the program.

__init__(self, name: str, platform: Platform, qubit_count: int = 0, creg_count: int = 0, breg_count:
int = 0)→ Program

__init__(self, name: str, platform: Platform, qubit_count: int = 0, creg_count: int = 0)→ Program
__init__(self, name: str, platform: Platform, qubit_count: int = 0)→ Program
__init__(self, name: str, platform: Platform)→ Program

add_kernel(self, k: Kernel)→ None
Adds an unconditionally-executed kernel to the end of the program.

Parameters k (Kernel) – The kernel to add.

Returns

Return type None

add_program(self, p: Program)→ None
Adds an unconditionally-executed subprogram to the end of the program.

Parameters p (Program) – The subprogram to add.

Returns

Return type None

22 Chapter 1. How to read the documentation

OpenQL

add_if(self, k: Kernel, operation: Operation)→ None
add_if(self, p: Program, operation: Operation)→ None

Adds a conditionally-executed kernel or subprogram to the end of the program. The kernel/subprogram
will be executed if the given classical condition evaluates to true.

Parameters

• k (Kernel) – The kernel to add.

• p (Program) – The subprogram to add.

• operation (Operation) – The operation that must evaluate to true for the ker-
nel/subprogram to be executed.

Returns

Return type None

add_if_else(self, k_if: Kernel, k_else: Kernel, operation: Operation)→ None
add_if_else(self, p_if: Program, p_else: Program, operation: Operation)→ None

Adds two conditionally-executed kernels/subprograms with inverted conditions to the end of the program.
The first kernel/subprogram will be executed if the given classical condition evaluates to true; the second
kernel/subprogram will be executed if it evaluates to false.

Parameters

• k_if (Kernel) – The kernel to execute when the condition evaluates to true.

• p_if (Program) – The subprogram to execute when the condition evaluates to true.

• k_else (Kernel) – The kernel to execute when the condition evaluates to false.

• p_else (Program) – The subprogram to execute when the condition evaluates to false.

• operation (Operation) – The operation that determines which kernel/subprogram
will be executed.

Returns

Return type None

add_do_while(self, k: Kernel, operation: Operation)→ None
add_do_while(self, p: Program, operation: Operation)→ None

Adds a kernel/subprogram that will be repeated until the given classical condition evaluates to true. The
kernel/subprogram is executed at least once, since the condition is evaluated at the end of the loop body.

Parameters

• k (Kernel) – The kernel that represents the loop body.

• p (Program) – The subprogram that represents the loop body.

• operation (Operation) – The operation that must evaluate to true at the end of the
loop body for the loop body to be executed again.

Returns

Return type None

add_for(self, k: Kernel, iterations: int)→ None
add_for(self, p: Program, iterations: int)→ None

Adds an unconditionally-executed kernel/subprogram that will loop for the given number of iterations.

Parameters

• k (Kernel) – The kernel that represents the loop body.

1.7. Python API 23

OpenQL

• p (Program) – The subprogram that represents the loop body.

• iterations (int) – The number of loop iterations.

Returns

Return type None

set_sweep_points(self, sweep_points: List[float])→ None
Sets sweep point information for the program.

NOTE: sweep points functionality is deprecated and may be removed at any time. Do not use it in new
programs.

Parameters sweep_points (List[float]) – The list of sweep points.

Returns

Return type None

get_sweep_points(self)→ List[float]
Returns the configured sweep point information for the program.

NOTE: sweep points functionality is deprecated and may be removed at any time. Do not use it in new
programs.

Parameters None –

Returns The previously configured sweep point information for the program, or an empty list if
none were configured.

Return type List[float]

set_config_file(self, config_file_name: str)→ None
Sets the name of the file that the sweep points will be written to.

NOTE: sweep points functionality is deprecated and may be removed at any time. Do not use it in new
programs.

Parameters config_file_name (str) – The name of the file that the sweep points are to
be written to.

Returns

Return type None

has_compiler(self)→ bool
Whether a custom compiler configuration has been attached to this program. When this is the case, it will
be used to implement compile(), rather than generating the compiler in-place from defaults and global
options during the call.

Parameters None –

Returns Whether a custom compiler configuration has been attached to this program.

Return type bool

get_compiler(self)→ Compiler
Returns the custom compiler configuration associated with this program. If no such configuration exists
yet, the default one is created, attached, and returned.

Parameters None –

Returns A Compiler object that may be used to introspect or modify the compilation strategy
associated with this program.

Return type Compiler

24 Chapter 1. How to read the documentation

OpenQL

set_compiler(self, compiler: Compiler)→ None
Sets the compiler associated with this program. It will then be used for compile().

Parameters compiler (Compiler) – The new compiler configuration.

Returns

Return type None

compile(self)→ None
Compiles the program.

Parameters None –

Returns

Return type None

print_interaction_matrix(self)→ None
Prints the interaction matrix for each kernel in the program.

Parameters None –

Returns

Return type None

write_interaction_matrix(self)→ None
Writes the interaction matrix for each kernel in the program to a file. This is one of the few functions that
still uses the global output_dir option.

Parameters None –

Returns

Return type None

1.7.4 Kernel class

class openql.Kernel(name, platform, qubit_count=0, creg_count=0, breg_count=0)
Represents a kernel of a quantum program, a.k.a. a basic block. Kernels are just sequences of gates with no
classical control-flow in between: they may end in a (conditional) branch to the start of another kernel, but
otherwise, they may only consist of quantum gates and mixed quantum-classical data flow operations.

The constructor creates a new kernel with the given name, using the given platform. The third, fourth, and fifth
arguments optionally specify the desired number of qubits, classical integer registers, and classical bit registers.
If not specified, the number of qubits is taken from the platform, and no classical or bit registers will be allocated.

Currently, the contents of a kernel can only be constructed by adding gates and classical data flow instructions
in the order in which they are to be executed, and there is no way to get information about which gates are in the
kernel after the fact. If you need this kind of bookkeeping, you will have to wrap OpenQL’s kernels for now.

Classical flow-control is configured when a completed kernel is added to a program, via basic structured control-
flow paradigms (if-else, do-while, and loops with a fixed iteration count).

NOTE: the way gates are represented in OpenQL is on the list to be completely revised. Currently OpenQL
works using a mixture of “default gates” and the “custom gates” that you can specify in the platform configura-
tion file, but these two things are not orthogonal and largely incompatible with each other, yet are currently used
interchangeably. Furthermore, there is no proper way to specify lists of generic arguments to a gate, leading to
lots of code duplication inside OpenQL and long gate() argument lists. Finally, the semantics of gates are largely
derived by undocumented and somewhat heuristic string comparisons with the names of gates, which is terrible
design in combination with user-specified instruction sets via the platform configuration file. The interface for

1.7. Python API 25

OpenQL

adding simple quantum gates to a kernel is something we want to keep 100% backward compatible, but the
more advanced gate() signatures may change in the (near) future.

NOTE: classical logic is on the list to be completely revised. This interface may change in the (near) future.

NOTE: the higher-order functions for constructing controlled kernels and conjugating kernels have not been
maintained for a while and thus probably won’t work right. They may be removed entirely in a later version of
OpenQL.

property name
The name of the kernel as given by the user.

property platform
The platform that the kernel was built for.

property qubit_count
The number of (virtual) qubits allocated for the kernel.

property creg_count
The number of classical integer registers allocated for the kernel.

property breg_count
The number of classical bit registers allocated for the kernel.

__init__(self, name: str, platform: Platform, qubit_count: int = 0, creg_count: int = 0, breg_count:
int = 0)→ Kernel

__init__(self, name: str, platform: Platform, qubit_count: int = 0, creg_count: int = 0)→ Kernel
__init__(self, name: str, platform: Platform, qubit_count: int = 0)→ Kernel
__init__(self, name: str, platform: Platform)→ Kernel

get_custom_instructions(self)→ str
Old alias for dump_custom_instructions(). Deprecated.

Parameters None –

Returns A newline-separated list of all custom gates supported by the platform.

Return type str

print_custom_instructions(self)→ None
Prints a list of all custom gates supported by the platform.

Parameters None –

Returns

Return type None

dump_custom_instructions(self)→ str
Returns the result of print_custom_instructions() as a string.

Parameters None –

Returns A newline-separated list of all custom gates supported by the platform.

Return type str

gate_preset_condition(self, condstring: str, condregs: List[int])→ None
Sets the condition for all gates subsequently added to this kernel. Thus, essentially shorthand notation.
Reset with gate_clear_condition().

Parameters

• condstring (str) – Must be one of:

– ”COND_ALWAYS” or “1”: no condition; gate is always executed.

26 Chapter 1. How to read the documentation

OpenQL

– ”COND_NEVER” or “0”: no condition; gate is never executed.

– ”COND_UNARY” or “” (empty): gate is executed if the single bit specified via con-
dregs is 1.

– ”COND_NOT” or “!”: gate is executed if the single bit specified via condregs is 0.

– ”COND_AND” or “&”: gate is executed if the two bits specified via condregs are both
1.

– ”COND_NAND” or “!&”: gate is executed if either of the two bits specified via con-
dregs is zero.

– ”COND_OR” or “|”: gate is executed if either of the two bits specified via condregs is
one.

– ”COND_NOR” or “!|”: no condition; gate is always executed.

• condregs (List[int]) – Depending on condstring, must be a list of 0, 1, or 2 breg
indices.

Returns

Return type None

gate_clear_condition(self)→ None
Clears a condition previously set via gate_preset_condition().

Parameters None –

Returns

Return type None

gate(self, name: str, q0: int)→ None
gate(self, name: str, q0: int, q1: int)→ None
gate(self, name: str, qubits: List[int], duration: int = 0, angle: float = 0.0, bregs: List[int], condstring:

str, condregs: List[int])→ None
gate(self, name: str, qubits: List[int], duration: int = 0, angle: float = 0.0, bregs: List[int], condstring:

str)→ None
gate(self, name: str, qubits: List[int], duration: int = 0, angle: float = 0.0, bregs: List[int])→ None
gate(self, name: str, qubits: List[int], duration: int = 0, angle: float = 0.0)→ None
gate(self, name: str, qubits: List[int], duration: int = 0)→ None
gate(self, name: str, qubits: List[int])→ None
gate(self, name: str, qubits: List[int], destination: CReg)→ None
gate(self, u: Unitary, qubits: List[int])→ None

Main function for appending arbitrary quantum gates.

Parameters

• name (str) – The name of the gate. Note that OpenQL currently uses string comparisons
with these names all over the place to derive functionality, and to derive what the actual
arguments do. This is inherently a bad idea and something we want to move away from, so
documenting it all would not be worthwhile. For now, just use common sense, and you’ll
probably be okay.

• q0 (int) – Index of the first qubit to apply the gate to. For controlled gates, this is the
control qubit.

• q1 (int) – Index of the second qubit to apply the gate to. For controlled gates, this is the
target qubit.

• qubits (List[int]) – The full list of qubit indices to apply the gate to.

1.7. Python API 27

OpenQL

• duration (int) – Gate duration in nanoseconds, or 0 to use the default value from the
platform configuration file. This is primarily intended to be used for wait gates.

• angle (float) – Rotation angle in radians for gates that use it (rx, ry, rz, etc). Ignored
for all other gates.

• bregs (List[int]) – The full list of bit register argument indices for the gate, exclud-
ing any bit registers used for conditional execution. Currently only used for the measure
gate, which may be given an explicit bit register index to return its result in. If no such
register is specified, the result is assumed to implicitly go to the bit register with the same
index as the qubit being measured. Ignored for gates that don’t use bit registers.

• condstring (str) – If specified, must be one of:

– ”COND_ALWAYS” or “1”: no condition; gate is always executed.

– ”COND_NEVER” or “0”: no condition; gate is never executed.

– ”COND_UNARY” or “” (empty): gate is executed if the single bit specified via con-
dregs is 1.

– ”COND_NOT” or “!”: gate is executed if the single bit specified via condregs is 0.

– ”COND_AND” or “&”: gate is executed if the two bits specified via condregs are both
1.

– ”COND_NAND” or “!&”: gate is executed if either of the two bits specified via con-
dregs is zero.

– ”COND_OR” or “|”: gate is executed if either of the two bits specified via condregs is
one.

– ”COND_NOR” or “!|”: no condition; gate is always executed.

• condregs (List[int]) – Depending on condstring, must be a list of 0, 1, or 2 breg
indices.

• destination (CReg) – An integer control register that receives the result of the mixed
quantum-classical gate identified by name.

• u (Unitary) – The unitary gate to insert.

Returns

Return type None

condgate(self, name: str, qubits: List[int], condstring: str, condregs: List[int])→ None
Alternative function for appending normal conditional quantum gates. Avoids having to specify duration,
angle, and bregs for gates that don’t need it.

Parameters

• name (str) – The name of the gate. Note that OpenQL currently uses string comparisons
with these names all over the place to derive functionality, and to derive what the actual
arguments do. This is inherently a bad idea and something we want to move away from, so
documenting it all would not be worthwhile. For now, just use common sense, and you’ll
probably be okay.

• qubits (List[int]) – The full list of qubit indices to apply the gate to.

• condstring (str) – If specified, must be one of:

– ”COND_ALWAYS” or “1”: no condition; gate is always executed.

– ”COND_NEVER” or “0”: no condition; gate is never executed.

28 Chapter 1. How to read the documentation

OpenQL

– ”COND_UNARY” or “” (empty): gate is executed if the single bit specified via con-
dregs is 1.

– ”COND_NOT” or “!”: gate is executed if the single bit specified via condregs is 0.

– ”COND_AND” or “&”: gate is executed if the two bits specified via condregs are both
1.

– ”COND_NAND” or “!&”: gate is executed if either of the two bits specified via con-
dregs is zero.

– ”COND_OR” or “|”: gate is executed if either of the two bits specified via condregs is
one.

– ”COND_NOR” or “!|”: no condition; gate is always executed.

• condregs (List[int]) – Depending on condstring, must be a list of 0, 1, or 2 breg
indices.

Returns

Return type None

classical(self, destination: CReg, operation: Operation)→ None
classical(self, operation: str)→ None

Appends a classical assignment gate to the circuit. The classical integer register is assigned to the result of
the given operation.

Parameters

• destination (CReg) – An integer control register at the left-hand side of the classical
assignment gate.

• operation (Operation) – The expression to evaluate on the right-hand side of the
classical assignment gate.

Returns

Return type None

identity(self, q0: int)→ None
Shorthand for an “identity” gate with a single qubit.

Parameters q0 (int) – The qubit to apply the gate to.

Returns

Return type None

hadamard(self, q0: int)→ None
Shorthand for appending a “hadamard” gate with a single qubit.

Parameters q0 (int) – The qubit to apply the gate to.

Returns

Return type None

s(self, q0: int)→ None
Shorthand for appending an “s” gate with a single qubit.

Parameters q0 (int) – The qubit to apply the gate to.

Returns

Return type None

1.7. Python API 29

OpenQL

sdag(self, q0: int)→ None
Shorthand for appending an “sdag” gate with a single qubit.

Parameters q0 (int) – The qubit to apply the gate to.

Returns

Return type None

t(self, q0: int)→ None
Shorthand for appending a “t” gate with a single qubit.

Parameters q0 (int) – The qubit to apply the gate to.

Returns

Return type None

tdag(self, q0: int)→ None
Shorthand for appending a “tdag” gate with a single qubit.

Parameters q0 (int) – The qubit to apply the gate to.

Returns

Return type None

x(self, q0: int)→ None
Shorthand for appending an “x” gate with a single qubit.

Parameters q0 (int) – The qubit to apply the gate to.

Returns

Return type None

y(self, q0: int)→ None
Shorthand for appending a “y” gate with a single qubit.

Parameters q0 (int) – The qubit to apply the gate to.

Returns

Return type None

z(self, q0: int)→ None
Shorthand for appending a “z” gate with a single qubit.

Parameters q0 (int) – The qubit to apply the gate to.

Returns

Return type None

rx90(self, q0: int)→ None
Shorthand for appending an “rx90” gate with a single qubit.

Parameters q0 (int) – The qubit to apply the gate to.

Returns

Return type None

mrx90(self, q0: int)→ None
Shorthand for appending an “mrx90” gate with a single qubit.

Parameters q0 (int) – The qubit to apply the gate to.

Returns

30 Chapter 1. How to read the documentation

OpenQL

Return type None

rx180(self, q0: int)→ None
Shorthand for appending an “rx180” gate with a single qubit.

Parameters q0 (int) – The qubit to apply the gate to.

Returns

Return type None

ry90(self, q0: int)→ None
Shorthand for appending an “ry90” gate with a single qubit.

Parameters q0 (int) – The qubit to apply the gate to.

Returns

Return type None

mry90(self, q0: int)→ None
Shorthand for appending an “mry90” gate with a single qubit.

Parameters q0 (int) – The qubit to apply the gate to.

Returns

Return type None

ry180(self, q0: int)→ None
Shorthand for appending an “ry180” gate with a single qubit.

Parameters q0 (int) – The qubit to apply the gate to.

Returns

Return type None

rx(self, q0: int, angle: float)→ None
Shorthand for appending an “rx” gate with a single qubit and the given rotation in radians.

Parameters

• q0 (int) – The qubit to apply the gate to.

• angle (float) – The rotation angle in radians.

Returns

Return type None

ry(self, q0: int, angle: float)→ None
Shorthand for appending an “ry” gate with a single qubit and the given rotation in radians.

Parameters

• q0 (int) – The qubit to apply the gate to.

• angle (float) – The rotation angle in radians.

Returns

Return type None

rz(self, q0: int, angle: float)→ None
Shorthand for appending an “rz” gate with a single qubit and the given rotation in radians.

Parameters

1.7. Python API 31

OpenQL

• q0 (int) – The qubit to apply the gate to.

• angle (float) – The rotation angle in radians.

Returns

Return type None

measure(self, q0: int)→ None
measure(self, q0: int, b0: int)→ None

Shorthand for appending a “measure” gate with a single qubit and implicit or explicit result bit register.

Parameters

• q0 (int) – The qubit to measure.

• b0 (int) – The bit register to store the result in. If not specified, the result will be placed
in the bit register corresponding to the index of the measured qubit.

Returns

Return type None

prepz(self, q0: int)→ None
Shorthand for appending a “prepz” gate with a single qubit.

Parameters q0 (int) – The qubit to prepare in the Z basis.

Returns

Return type None

cnot(self, q0: int, q1: int)→ None
Shorthand for appending a “cnot” gate with two qubits.

Parameters

• q0 (int) – The control qubit index.

• q1 (int) – The target qubit index

Returns

Return type None

cphase(self, q0: int, q1: int)→ None
Shorthand for appending a “cphase” gate with two qubits.

Parameters

• q0 (int) – The first qubit index.

• q1 (int) – The second qubit index.

Returns

Return type None

cz(self, q0: int, q1: int)→ None
Shorthand for appending a “cz” gate with two qubits.

Parameters

• q0 (int) – The first qubit index.

• q1 (int) – The second qubit index.

Returns

32 Chapter 1. How to read the documentation

OpenQL

Return type None

toffoli(self, q0: int, q1: int, q2: int)→ None
Shorthand for appending a “toffoli” gate with three qubits.

Parameters

• q0 (int) – The first control qubit index.

• q1 (int) – The second control qubit index.

• q2 (int) – The target qubit index.

Returns

Return type None

clifford(self, id: int, q0: int)→ None
Shorthand for appending the Clifford gate with the specific number using the minimal number of rx90,
rx180, mrx90, ry90, ry180, and mry90 gates.

Parameters

• id (int) – The Clifford gate expansion index:

– 0: no gates inserted.

– 1: ry90; rx90

– 2: mrx90, mry90

– 3: rx180

– 4: mry90, mrx90

– 5: rx90, mry90

– 6: ry180

– 7: mry90, rx90

– 8: rx90, ry90

– 9: rx180, ry180

– 10: ry90, mrx90

– 11: mrx90, ry90

– 12: ry90, rx180

– 13: mrx90

– 14: rx90, mry90, mrx90

– 15: mry90

– 16: rx90

– 17: rx90, ry90, rx90

– 18: mry90, rx180

– 19: rx90, ry180

– 20: rx90, mry90, rx90

– 21: ry90

– 22: mrx90, ry180

1.7. Python API 33

OpenQL

– 23: rx90, ry90, mrx90

• q0 (int) – The target qubit.

Returns

Return type None

wait(self, qubits: List[int], duration: int)→ None
Shorthand for appending a “wait” gate with the specified qubits and duration in nanoseconds. If no qubits
are specified, the wait applies to all qubits instead (a wait with no qubits is meaningless). Note that the
duration will usually end up being rounded up to multiples of the platform’s cycle time.

Parameters

• qubits (List[int]) – The list of qubits to apply the wait gate to. If empty, the list
will be replaced with the set of all qubits.

• duration (int) – The duration of the wait gate in nanoseconds.

Returns

Return type None

barrier(self, qubits: List[int])→ None
barrier(self)→ None

Shorthand for appending a “wait” gate with the specified qubits and duration 0. If no qubits are specified,
the wait applies to all qubits instead (a wait with no qubits is meaningless).

Parameters qubits (List[int]) – The list of qubits to apply the wait gate to. If empty or
unspecified, the list will be replaced with the set of all qubits.

Returns

Return type None

display(self)→ None
Shorthand for appending a “display” gate with no qubits.

Parameters None –

Returns

Return type None

controlled(self, k: Kernel, control_qubits: List[int], ancilla_qubits: List[int])→ None
Appends a controlled kernel. The number of control and ancilla qubits must be equal.

Parameters

• k (Kernel) – The kernel to make controlled.

• control_qubits (List[int]) – The qubits that control the kernel.

• ancilla_qubits (List[int]) – The ancilla qubits to use to make the kernel con-
trolled. The number of ancilla qubits must equal the number of control qubits.

Returns

Return type None

conjugate(self, k: Kernel)→ None
Appends the conjugate of the given kernel to this kernel.

NOTE: this high-level functionality is poorly/not maintained, and relies on default gates, which are on the
list for removal.

34 Chapter 1. How to read the documentation

OpenQL

Parameters k (Kernel) – The kernel to conjugate.

Returns

Return type None

1.7.5 CReg class

class openql.CReg(id)
Wrapper for a classical integer register with the given index.

NOTE: classical logic is on the list to be completely revised. This interface may change in the (near) future.

__init__(self, id: int)→ CReg

1.7.6 Operation class

class openql.Operation(*args)
Wrapper for a classical operation.

A classical operation acts as a simple expression that returns an integer or a boolean. The expression can be a
literal number (val), a single CReg (lop, primarily used for assignments), a unary function applied to one CReg
(op/rop), or a binary function applied to two CRegs (lop/op/rop).

Function selection is done via strings. The following unary functions are recognized:

• ‘~’: bitwise NOT.

The following binary functions are recognized:

• ‘+’: addition.

• ‘-‘: subtraction.

• ‘&’: bitwise AND.

• ‘|’: bitwise OR.

• ‘^’: bitwise XOR.

• ‘==’: equality.

• ‘!=’: inequality.

• ‘>’: greater-than.

• ‘>=’: greater-or-equal.

• ‘<’: less-than.

• ‘<=’: less-or-equal.

NOTE: classical logic is on the list to be completely revised. This interface may change in the (near) future.

__init__(self, lop: CReg, op: str, rop: CReg)→ Operation
__init__(self, op: str, rop: CReg)→ Operation
__init__(self, lop: CReg)→ Operation
__init__(self, val: int)→ Operation

1.7. Python API 35

OpenQL

1.7.7 Unitary class

class openql.Unitary(name, matrix)
Unitary matrix interface.

The constructor creates a unitary gate from the given row-major, square, unitary matrix.

property name
The name given to the unitary gate.

__init__(self, name: str, matrix: vectorc)→ Unitary

decompose(self)→ None
Explicitly decomposes the gate. Does not need to be called; it will be called automatically when the gate
is added to the kernel.

Parameters None –

Returns

Return type None

static is_decompose_support_enabled()→ bool
Returns whether OpenQL was built with unitary decomposition support enabled.

Parameters None –

Returns Whether OpenQL was built with unitary decomposition support enabled.

Return type bool

1.7.8 Compiler class

class openql.Compiler(*args)
Wrapper for the compiler/pass manager.

This allows you to change the compilation strategy, if the defaults are insufficient for your application. You can
get access to a Compiler via several methods:

• using Platform.get_compiler();

• using Program.get_compiler();

• using one of the constructors.

Using the constructors, you can get an empty compiler (by specifying no arguments or only specifying name),
a default compiler for a given platform (by specifying a name and a platform), or a compiler based on a
compiler configuration JSON file (by specifying a name and a filename). For the structure of this JSON
file, refer to the configuration section of the ReadTheDocs documentation or, equivalently, the result of
openql.print_compiler_docs().

property name
User-given name for this compiler.

NOTE: not actually used for anything. It’s only here for consistency with the rest of the API objects.

__init__(self, name: str)→ Compiler
__init__(self)→ Compiler
__init__(self, name: str, filename: str)→ Compiler
__init__(self, name: str, platform: Platform)→ Compiler

print_pass_types(self)→ None
Prints documentation for all available pass types, as well as the option documentation for the passes.

36 Chapter 1. How to read the documentation

OpenQL

Parameters None –

Returns

Return type None

dump_pass_types(self)→ str
Returns documentation for all available pass types, as well as the option documentation for the passes.

Parameters None –

Returns The list of pass types and their documentation as a multiline string.

Return type str

print_strategy(self)→ None
Prints the currently configured compilation strategy.

Parameters None –

Returns

Return type None

dump_strategy(self)→ str
Returns the currently configured compilation strategy as a string.

Parameters None –

Returns The current compilation strategy as a multiline string.

Return type str

set_option(self, path: str, value: str, must_exist: bool = True)→ int
set_option(self, path: str, value: str)→ int

Sets a pass option. The path must consist of the target pass instance name and the option name, separated
by a period. The former may include * or ? wildcards. If must_exist is set an exception will be thrown if
none of the passes were affected, otherwise 0 will be returned.

Parameters

• path (str) – The path to the option, consisting of the pass name and the option name
separated by a period.

• value (str) – The value to set the option to.

• must_exist (bool) – When set, an exception will be thrown when no options matched
the path.

Returns The number of pass options affected.

Return type int

get_option(self, path: str)→ str
Returns the current value of an option.

Parameters path (str) – The path to the option, consisting of pass name and the actual option
name separated by a period.

Returns The value of the option. If the option has not been set, the default value is returned.

Return type str

append_pass(self, type_name: str, instance_name: str, options: Dict[str, str])→ Pass
append_pass(self, type_name: str, instance_name: str)→ Pass
append_pass(self, type_name: str)→ Pass

Appends a pass to the end of the pass list. Returns a reference to the constructed pass.

1.7. Python API 37

OpenQL

Parameters

• type_name (str) – The type of the pass to add.

• instance_name (str) – A unique name for the pass instance. If empty or unspecified,
a name will be generated.

• options (dict[str, str]) – A list of initial options to set for the pass. This is just
shorthand notation for calling set_option() on the returned Pass object.

Returns A reference to the added pass.

Return type Pass

prefix_pass(self, type_name: str, instance_name: str, options: Dict[str, str])→ Pass
prefix_pass(self, type_name: str, instance_name: str)→ Pass
prefix_pass(self, type_name: str)→ Pass

Appends a pass to the beginning of the pass list. Returns a reference to the constructed pass.

Parameters

• type_name (str) – The type of the pass to add.

• instance_name (str) – A unique name for the pass instance. If empty or unspecified,
a name will be generated.

• options (dict[str, str]) – A list of initial options to set for the pass. This is just
shorthand notation for calling set_option() on the returned Pass object.

Returns A reference to the added pass.

Return type Pass

insert_pass_after(self, target: str, type_name: str, instance_name: str, options: Dict[str, str])→
Pass

insert_pass_after(self, target: str, type_name: str, instance_name: str)→ Pass
insert_pass_after(self, target: str, type_name: str)→ Pass

Inserts a pass immediately after the target pass (named by instance). If target does not exist, an exception
is thrown. Returns a reference to the constructed pass.

Parameters

• target (str) – The name of the pass to insert the new pass after.

• type_name (str) – The type of the pass to add.

• instance_name (str) – A unique name for the pass instance. If empty or unspecified,
a name will be generated.

• options (dict[str, str]) – A list of initial options to set for the pass. This is just
shorthand notation for calling set_option() on the returned Pass object.

Returns A reference to the added pass.

Return type Pass

insert_pass_before(self, target: str, type_name: str, instance_name: str, options: Dict[str, str])
→ Pass

insert_pass_before(self, target: str, type_name: str, instance_name: str)→ Pass
insert_pass_before(self, target: str, type_name: str)→ Pass

Inserts a pass immediately before the target pass (named by instance). If target does not exist, an exception
is thrown. Returns a reference to the constructed pass.

Parameters

• target (str) – The name of the pass to insert the new pass before.

38 Chapter 1. How to read the documentation

OpenQL

• type_name (str) – The type of the pass to add.

• instance_name (str) – A unique name for the pass instance. If empty or unspecified,
a name will be generated.

• options (dict[str, str]) – A list of initial options to set for the pass. This is just
shorthand notation for calling set_option() on the returned Pass object.

Returns A reference to the added pass.

Return type Pass

get_pass(self, target: str)→ Pass
Returns a reference to the pass with the given instance name. If no such pass exists, an exception is thrown.

Parameters target (str) – The name of the pass to retrieve a reference to.

Returns A reference to the targeted pass.

Return type Pass

does_pass_exist(self, target: str)→ bool
Returns whether a pass with the target instance name exists.

Parameters target (str) – The name of the pass to query existence of.

Returns Whether a pass with the target name exists.

Return type bool

get_num_passes(self)→ int
Returns the total number of passes in the root hierarchy.

Parameters None –

Returns The number of passes (or groups) within the root pass list.

Return type int

get_passes(self)→ List[Pass]
Returns a list with references to all passes in the root hierarchy.

Parameters None –

Returns The list of all passes in the root hierarchy.

Return type list[Pass]

get_passes_by_type(self, target: str)→ List[Pass]
Returns a list with references to all passes in the root hierarchy with the given type.

Parameters target (str) – The target pass type name.

Returns The list of all passes in the root hierarchy with the given type.

Return type list[Pass]

remove_pass(self, target: str)→ None
Removes the pass with the given target instance name, or throws an exception if no such pass exists.

Parameters target (str) – The name of the pass to remove.

Returns

Return type None

clear_passes(self)→ None
Clears the entire pass list.

1.7. Python API 39

OpenQL

Parameters None –

Returns

Return type None

compile(self, program: Program)→ None
Ensures that all passes have been constructed, and then runs the passes on the given program. This is the
same as Program.compile() when the program is referencing the same compiler.

Parameters program (Program) – The program to compile.

Returns

Return type None

1.7.9 Pass class

class openql.Pass
Wrapper for a pass that belongs to some pass manager.

NOTE: while it’s possible to construct a pass manually, the resulting object cannot be used in any way. The only
way to obtain a valid pass object is through a Compiler object.

__init__(self)→ Pass

get_type(self)→ str
Returns the full, desugared type name that this pass was constructed with.

Parameters None –

Returns The type name.

Return type str

get_name(self)→ str
Returns the instance name of the pass within the surrounding group.

Parameters None –

Returns The instance name.

Return type str

print_pass_documentation(self)→ None
Prints the documentation for this pass.

Parameters None –

Returns

Return type None

dump_pass_documentation(self)→ str
Returns the documentation for this pass as a string.

Parameters None –

Returns The documentation for this pass as a multiline string.

Return type str

print_options(self, only_set: bool = False)→ None
print_options(self)→ None

Prints the current state of the options.

40 Chapter 1. How to read the documentation

OpenQL

Parameters only_set (bool) – When set, only the options that were explicitly configured
are dumped.

Returns

Return type None

dump_options(self, only_set: bool = False)→ str
dump_options(self)→ str

Returns the string printed by print_options().

Parameters only_set (bool) – When set, only the options that were explicitly configured
are dumped.

Returns The option documentation as a multiline string.

Return type str

set_option(self, option: str, value: str)→ None
Sets an option.

Parameters

• option (str) – The option name.

• value (str) – The value to set the option to.

Returns

Return type None

get_option(self, option: str)→ str
Returns the current value of an option.

Parameters path (str) – The path to the option.

Returns The value of the option. If the option has not been set, the default value is returned.

Return type str

1.7.10 cQasmReader class

class openql.cQasmReader(*args)
cQASM reader interface.

To read a cQASM file, build a cQASM reader for the an already-existing program, and then call file2circuit
or string2circuit to add the kernels from the cQASM file/string to the program. Optionally a platform can be
specified as well, but this is redundant (it must be the same platform as the one that the program was constructed
with); these overloads only exist for backward compatibility.

Because OpenQL supports custom gates and cQASM (historically) does not, and also because OpenQL’s inter-
nal representation of gates is still a bit different from what cQASM uses, you may need custom conversion rules
for the gates. This can be done by specifying a gateset configuration JSON file using gateset_fname. This file
must consist of a JSON array containing objects with the following structure:

{
"name": "<name>", # mandatory
"params": "<typespec>", # mandatory
"allow_conditional": <bool>, # whether conditional gates of this type are

→˓accepted, defaults to true
"allow_parallel": <bool>, # whether parallel gates of this type are

→˓accepted, defaults to true

(continues on next page)

1.7. Python API 41

OpenQL

(continued from previous page)

"allow_reused_qubits": <bool>, # whether reused qubit args for this type are
→˓accepted, defaults to false

"ql_name": "<name>", # defaults to "name"
"ql_qubits": [# list or "all", defaults to the "Q" args

0, # hardcoded qubit index
"%0" # reference to argument 0, which can be a

→˓qubitref, bitref, or int
],
"ql_cregs": [# list or "all", defaults to the "I" args

0, # hardcoded creg index
"%0" # reference to argument 0, which can be an

→˓int variable reference, or int for creg index
],
"ql_bregs": [# list or "all", defaults to the "B" args

0, # hardcoded breg index
"%0" # reference to argument 0, which can be an

→˓int variable reference, or int for creg index
],
"ql_duration": 0, # duration; int to hardcode or "%i" to take

→˓from param i (must be of type int), defaults to 0
"ql_angle": 0.0, # angle; float to hardcode or "%i" to take

→˓from param i (must be of type int or real), defaults to first arg of type real
→˓or 0.0

"ql_angle_type": "<type>", # interpretation of angle arg; one of "rad"
→˓(radians), "deg" (degrees), or "pow2" (2pi/2^k radians), defaults to "rad"

"implicit_sgmq": <bool>, # if multiple qubit args are present, a
→˓single-qubit gate of this type should be replicated for these qubits (instead
→˓of a single gate with many qubits)

"implicit_breg": <bool> # the breg operand(s) that implicitly belongs
→˓to the qubit operand(s) in the gate should be added to the OpenQL operand list
}

The typespec string defines the expected argument types for the gate. Each character in the string represents an
argument. The following characters are supported by libqasm:

• Q = qubit

• B = assignable bit/boolean (measurement register)

• b = bit/boolean

• a = axis (x, y, or z)

• I = assignable integer

• i = integer

• r = real

• c = complex

• u = complex matrix of size 4^n, where n is the number of qubits in the parameter list (automatically
deduced)

• s = (quoted) string

• j = json

Note that OpenQL only uses an argument if it is referred to in one of the “ql_*” keys, either implicitly or
explicitly.

42 Chapter 1. How to read the documentation

OpenQL

property platform
The platform associated with the reader.

property program
The program that the cQASM circuits will be added to.

__init__(self, platform: Platform, program: Program, gateset_fname: str)→ cQasmReader
__init__(self, platform: Platform, program: Program)→ cQasmReader
__init__(self, program: Program, gateset_fname: str)→ cQasmReader
__init__(self, program: Program)→ cQasmReader

string2circuit(self, cqasm_str: str)→ None
Interprets a string as cQASM file and adds its contents to the program associated with this reader.

Parameters cqasm_str (str) – The string representing the contents of the cQASM file.

Returns

Return type None

file2circuit(self, cqasm_file_path: str)→ None
Interprets a string as cQASM file and adds its contents to the program associated with this reader.

Parameters cqasm_file_path (str) – The path to the cQASM file to load.

Returns

Return type None

1.7.11 Functions and miscellaneous

openql.initialize()→ None
Initializes the OpenQL library, for as far as this must be done. This should ideally be called by the user (in
Python) before anything else, but set_option() and the constructors of Compiler and Platform will automatically
call this when it hasn’t been done yet as well.

Currently this just resets the options to their default values to give the user a clean slate to work with in terms of
global variables (in case someone else has used the library in the same interpreter before them, for instance, as
might happen with ipython/Jupyter in a shared notebook server, or during test suites), but it may initialize more
things in the future.

Parameters None –

Returns

Return type None

openql.ensure_initialized()→ None
Calls initialize() if it hasn’t been called yet.

Parameters None –

Returns

Return type None

openql.get_version()→ str
Returns the compiler’s version string.

Parameters None –

Returns version number as a string

Return type str

1.7. Python API 43

OpenQL

openql.set_option(option: str, value: str)→ None
Sets a global option for the compiler. Use print_options() to get a list of all available options.

Parameters

• option (str) – Name of the option to set.

• value (str) – The value to set the option to.

Returns

Return type None

openql.get_option(option: str)→ str
Returns the current value for a global option. Use print_options() to get a list of all available options.

Parameters option (str) – Name of the option to retrieve the value of.

Returns The value that the option has been set to, or its default value if the option has not been set
yet.

Return type str

openql.print_options()→ None
Prints the documentation for all available global options.

Parameters None –

Returns

Return type None

openql.dump_options()→ str
Returns the result of print_options() as a string.

Parameters None –

Returns The documentation for the options.

Return type str

openql.print_architectures()→ None
Prints the documentation for all available target architectures.

Parameters None –

Returns

Return type None

openql.dump_architectures()→ str
Returns the result of print_architectures() as a string.

Parameters None –

Returns The documentation for the supported architectures.

Return type str

openql.print_passes()→ None
Prints the documentation for all available passes.

Parameters None –

Returns

Return type None

44 Chapter 1. How to read the documentation

OpenQL

openql.dump_passes()→ str
Returns the result of print_passes() as a string.

Parameters None –

Returns The documentation for the supported passes.

Return type str

openql.print_resources()→ None
Prints the documentation for all available scheduler resources.

Parameters None –

Returns

Return type None

openql.dump_resources()→ str
Returns the result of print_resources() as a string.

Parameters None –

Returns The documentation for the supported scheduler resources.

Return type str

openql.print_platform_docs()→ None
Prints the documentation for platform configuration files.

Parameters None –

Returns

Return type None

openql.dump_platform_docs()→ str
Returns the result of print_platform_docs() as a string.

Parameters None –

Returns The documentation for the platform configuration file.

Return type str

openql.print_compiler_docs()→ None
Prints the documentation for compiler configuration files.

Parameters None –

Returns

Return type None

openql.dump_compiler_docs()→ str
Returns the result of print_compiler_docs() as a string.

Parameters None –

Returns The documentation for the compiler configuration file.

Return type str

class openql.Platform(*args)
Quantum platform description. This describes everything that the compiler needs to know about the target
quantum chip, instruments, etc. Platforms are created from either the default configuration for a particular
architecture variant or from JSON (+ comments) configuration files: there is no way to modify a platform using
the API, and introspection is limited. Instead, if you want to use a custom configuration, you will need to write

1.7. Python API 45

OpenQL

a JSON configuration file for it, or use get_platform_json() and from_json() to modify an existing one from
within Python.

The syntax of the platform configuration file is too extensive to describe here. It has its own section in the
manual.

In addition to the platform itself, the Platform object provides an interface for obtaining a Compiler object. This
object describes the strategy for transforming the quantum algorithm to something that can be executed on the
device described by the platform. You can think of the difference between them as the difference between a verb
and a noun: the platform describes something that just exists, while the compilation strategy describes how to
get there.

The (initial) strategy can be set using a separate configuration file (compiler_config), directly from within the
platform configuration file, or one can be inferred based on the previously hardcoded defaults. Unlike the plat-
form itself however, an extensive API is available for adjusting the strategy as you see fit; just use get_compiler()
to get a reference to a Compiler object that may be used for this purpose. If you don’t do anything with the com-
piler methods and object, don’t specify the compiler_config_file parameter, and the “eqasm_compiler” key of
the platform configuration file refers to one of the previously-hardcoded compiler, a strategy will be generated
to mimic the old logic for backward compatibility.

Eight constructors are provided:

• Platform(): shorthand for Platform(‘none’, ‘none’).

• Platform(name): shorthand for Platform(name, name).

• Platform(name, platform_config): builds a platform with the given name (only used for log messages)
and platform configuration, the latter of which can be either a recognized platform name with or without
variant suffix (for example “cc” or “cc_light.s7”), or a path to a JSON configuration filename.

• Platform(name, platform_config, compiler_config): as above, but specifies a custom compiler configura-
tion file in addition.

• Platform.from_json(name, platform_config_json): instead of loading the platform JSON data from a file,
it is taken from its Python object representation (as per json.loads()/dumps()).

• Platform.from_json(name, platform_config_json, compiler_config): as above, with compiler JSON file
override.

• Platform.from_json_string(name, platform_config_json): as from_json, but loads the data from a string
rather than a Python object.

• Platform.from_json_string(name, platform_config_json, compiler_config): as from_json, but loads the
data from a string rather than a Python object.

property name
The user-given name of the platform.

property config_file
The configuration file that the platform was loaded from.

__init__(self, name: str, platform_config: str, compiler_config: str)→ Platform
__init__(self, name: str, platform_config: str)→ Platform
__init__(self, name: str)→ Platform
__init__(self)→ Platform

static from_json_string(name: str, platform_config_json: str, compiler_config: str) → Plat-
form

static from_json_string(name: str, platform_config_json: str)→ Platform
Alternative constructor. Instead of the platform JSON data being loaded from a file, they are loaded from
the given string. See also from_json().

Parameters

46 Chapter 1. How to read the documentation

OpenQL

• name (str) – The name for the platform.

• platform_config_json (str) – The platform JSON configuration data as a string.
This will accept anything that the normal constructor accepts when it reads the configura-
tion from a file.

• compiler_config (str) – Optional compiler configuration JSON filename. This is
NOT JSON data.

Returns The constructed platform.

Return type Platform

static get_platform_json_string(platform_config: str)→ str
static get_platform_json_string()→ str

Returns the default platform configuration data as a JSON + comments string. The comments use double-
slash syntax. Note that JSON itself does not support such comments (or comments of any kind), so these
comments need to be removed from the data before the JSON data can be parsed.

Parameters platform_config (str) – The platform configuration. Same syntax as the
platform constructor, so this supports architecture names, architecture variant names, or
JSON filenames. In the latter case, this function just loads the file contents into a string
and returns it.

Returns The JSON + comments data for the given platform configuration string.

Return type str

get_qubit_number(self)→ int
Returns the number of qubits in the platform.

Parameters None –

Returns The number of qubits in the platform.

Return type int

print_info(self)→ None
Prints some basic information about the platform.

Parameters None –

Returns

Return type None

dump_info(self)→ str
Returns the result of print_info() as a string.

Parameters None –

Returns The result of print_info() as a string.

Return type str

get_info(self)→ str
Old alias for dump_info(). Deprecated.

Parameters None –

Returns The result of print_info() as a string.

Return type str

1.7. Python API 47

OpenQL

has_compiler(self)→ bool
Returns whether a custom compiler configuration has been attached to this platform. When this is the
case, programs constructed from this platform will use it to implement Program.compile(), rather than
generating the compiler in-place from defaults and global options during the call.

Parameters None –

Returns Whether a custom compiler configuration has been attached to this platform.

Return type bool

get_compiler(self)→ Compiler
Returns the custom compiler configuration associated with this platform. If no such configuration exists
yet, the default one is created, attached, and returned.

Parameters None –

Returns A Compiler object that may be used to introspect or modify the compilation strategy
associated with this platform.

Return type Compiler

set_compiler(self, compiler: Compiler)→ None
Sets the compiler associated with this platform. Any programs constructed from this platform after this
call will use the given compiler.

Parameters compiler (Compiler) – The new compiler configuration.

Returns

Return type None

static from_json(name: str, platform_config_json: Dict[. . .], compiler_config: str)→ Platform
static from_json(name: str, platform_config_json: Dict[. . .]) → Platform

Alternative constructor. Instead of the platform JSON data being loaded from a file, they are loaded from
the given Python object representation of the JSON platform configuration data.

This is useful when you only need to change a builtin platform for some architecture variant a little bit. In
this case, you can get the default JSON data using get_platform_json(), introspect and modify it program-
matically, and then use this to build the platform from the modified configuration.

Parameters

• name (str) – The name for the platform.

• platform_config_json (JSON-like object) – The platform JSON configura-
tion data in Python object representation (anything accepted by json.dumps()).

• compiler_config (str) – Optional compiler configuration JSON filename. This is
NOT JSON data.

Returns The constructed platform.

Return type Platform

static get_platform_json(platform_config: str) -> Dict[...] get_platform_json()→ Dict[. . .]
Returns the default platform configuration data as the Python object representation of the JSON data (as
returned by json.loads()).

Parameters platform_config (str) – The platform configuration. Same syntax as the
platform constructor, so this supports architecture names, architecture variant names, or
JSON filenames. In the latter case, this function just parses the file contents and returns
it.

48 Chapter 1. How to read the documentation

OpenQL

Returns The Python object representation of the JSON data corresponding to the given platform
configuration string.

Return type str

class openql.Program(name, platform, qubit_count=0, creg_count=0, breg_count=0)
Represents a complete quantum program.

The constructor creates a new program with the given name, using the given platform. The third, fourth, and
fifth arguments optionally specify the desired number of qubits, classical integer registers, and classical bit
registers. If not specified, the number of qubits is taken from the platform, and no classical or bit registers will
be allocated.

property name
The name given to the program by the user.

property platform
The platform associated with the program.

property qubit_count
The number of (virtual) qubits allocated for the program.

property creg_count
The number of classical integer registers allocated for the program.

property breg_count
The number of classical bit registers allocated for the program.

__init__(self, name: str, platform: Platform, qubit_count: int = 0, creg_count: int = 0, breg_count:
int = 0)→ Program

__init__(self, name: str, platform: Platform, qubit_count: int = 0, creg_count: int = 0)→ Program
__init__(self, name: str, platform: Platform, qubit_count: int = 0)→ Program
__init__(self, name: str, platform: Platform)→ Program

add_kernel(self, k: Kernel)→ None
Adds an unconditionally-executed kernel to the end of the program.

Parameters k (Kernel) – The kernel to add.

Returns

Return type None

add_program(self, p: Program)→ None
Adds an unconditionally-executed subprogram to the end of the program.

Parameters p (Program) – The subprogram to add.

Returns

Return type None

add_if(self, k: Kernel, operation: Operation)→ None
add_if(self, p: Program, operation: Operation)→ None

Adds a conditionally-executed kernel or subprogram to the end of the program. The kernel/subprogram
will be executed if the given classical condition evaluates to true.

Parameters

• k (Kernel) – The kernel to add.

• p (Program) – The subprogram to add.

• operation (Operation) – The operation that must evaluate to true for the ker-
nel/subprogram to be executed.

1.7. Python API 49

OpenQL

Returns

Return type None

add_if_else(self, k_if: Kernel, k_else: Kernel, operation: Operation)→ None
add_if_else(self, p_if: Program, p_else: Program, operation: Operation)→ None

Adds two conditionally-executed kernels/subprograms with inverted conditions to the end of the program.
The first kernel/subprogram will be executed if the given classical condition evaluates to true; the second
kernel/subprogram will be executed if it evaluates to false.

Parameters

• k_if (Kernel) – The kernel to execute when the condition evaluates to true.

• p_if (Program) – The subprogram to execute when the condition evaluates to true.

• k_else (Kernel) – The kernel to execute when the condition evaluates to false.

• p_else (Program) – The subprogram to execute when the condition evaluates to false.

• operation (Operation) – The operation that determines which kernel/subprogram
will be executed.

Returns

Return type None

add_do_while(self, k: Kernel, operation: Operation)→ None
add_do_while(self, p: Program, operation: Operation)→ None

Adds a kernel/subprogram that will be repeated until the given classical condition evaluates to true. The
kernel/subprogram is executed at least once, since the condition is evaluated at the end of the loop body.

Parameters

• k (Kernel) – The kernel that represents the loop body.

• p (Program) – The subprogram that represents the loop body.

• operation (Operation) – The operation that must evaluate to true at the end of the
loop body for the loop body to be executed again.

Returns

Return type None

add_for(self, k: Kernel, iterations: int)→ None
add_for(self, p: Program, iterations: int)→ None

Adds an unconditionally-executed kernel/subprogram that will loop for the given number of iterations.

Parameters

• k (Kernel) – The kernel that represents the loop body.

• p (Program) – The subprogram that represents the loop body.

• iterations (int) – The number of loop iterations.

Returns

Return type None

set_sweep_points(self, sweep_points: List[float])→ None
Sets sweep point information for the program.

NOTE: sweep points functionality is deprecated and may be removed at any time. Do not use it in new
programs.

50 Chapter 1. How to read the documentation

OpenQL

Parameters sweep_points (List[float]) – The list of sweep points.

Returns

Return type None

get_sweep_points(self)→ List[float]
Returns the configured sweep point information for the program.

NOTE: sweep points functionality is deprecated and may be removed at any time. Do not use it in new
programs.

Parameters None –

Returns The previously configured sweep point information for the program, or an empty list if
none were configured.

Return type List[float]

set_config_file(self, config_file_name: str)→ None
Sets the name of the file that the sweep points will be written to.

NOTE: sweep points functionality is deprecated and may be removed at any time. Do not use it in new
programs.

Parameters config_file_name (str) – The name of the file that the sweep points are to
be written to.

Returns

Return type None

has_compiler(self)→ bool
Whether a custom compiler configuration has been attached to this program. When this is the case, it will
be used to implement compile(), rather than generating the compiler in-place from defaults and global
options during the call.

Parameters None –

Returns Whether a custom compiler configuration has been attached to this program.

Return type bool

get_compiler(self)→ Compiler
Returns the custom compiler configuration associated with this program. If no such configuration exists
yet, the default one is created, attached, and returned.

Parameters None –

Returns A Compiler object that may be used to introspect or modify the compilation strategy
associated with this program.

Return type Compiler

set_compiler(self, compiler: Compiler)→ None
Sets the compiler associated with this program. It will then be used for compile().

Parameters compiler (Compiler) – The new compiler configuration.

Returns

Return type None

compile(self)→ None
Compiles the program.

Parameters None –

1.7. Python API 51

OpenQL

Returns

Return type None

print_interaction_matrix(self)→ None
Prints the interaction matrix for each kernel in the program.

Parameters None –

Returns

Return type None

write_interaction_matrix(self)→ None
Writes the interaction matrix for each kernel in the program to a file. This is one of the few functions that
still uses the global output_dir option.

Parameters None –

Returns

Return type None

class openql.Kernel(name, platform, qubit_count=0, creg_count=0, breg_count=0)
Represents a kernel of a quantum program, a.k.a. a basic block. Kernels are just sequences of gates with no
classical control-flow in between: they may end in a (conditional) branch to the start of another kernel, but
otherwise, they may only consist of quantum gates and mixed quantum-classical data flow operations.

The constructor creates a new kernel with the given name, using the given platform. The third, fourth, and fifth
arguments optionally specify the desired number of qubits, classical integer registers, and classical bit registers.
If not specified, the number of qubits is taken from the platform, and no classical or bit registers will be allocated.

Currently, the contents of a kernel can only be constructed by adding gates and classical data flow instructions
in the order in which they are to be executed, and there is no way to get information about which gates are in the
kernel after the fact. If you need this kind of bookkeeping, you will have to wrap OpenQL’s kernels for now.

Classical flow-control is configured when a completed kernel is added to a program, via basic structured control-
flow paradigms (if-else, do-while, and loops with a fixed iteration count).

NOTE: the way gates are represented in OpenQL is on the list to be completely revised. Currently OpenQL
works using a mixture of “default gates” and the “custom gates” that you can specify in the platform configura-
tion file, but these two things are not orthogonal and largely incompatible with each other, yet are currently used
interchangeably. Furthermore, there is no proper way to specify lists of generic arguments to a gate, leading to
lots of code duplication inside OpenQL and long gate() argument lists. Finally, the semantics of gates are largely
derived by undocumented and somewhat heuristic string comparisons with the names of gates, which is terrible
design in combination with user-specified instruction sets via the platform configuration file. The interface for
adding simple quantum gates to a kernel is something we want to keep 100% backward compatible, but the
more advanced gate() signatures may change in the (near) future.

NOTE: classical logic is on the list to be completely revised. This interface may change in the (near) future.

NOTE: the higher-order functions for constructing controlled kernels and conjugating kernels have not been
maintained for a while and thus probably won’t work right. They may be removed entirely in a later version of
OpenQL.

property name
The name of the kernel as given by the user.

property platform
The platform that the kernel was built for.

property qubit_count
The number of (virtual) qubits allocated for the kernel.

52 Chapter 1. How to read the documentation

OpenQL

property creg_count
The number of classical integer registers allocated for the kernel.

property breg_count
The number of classical bit registers allocated for the kernel.

__init__(self, name: str, platform: Platform, qubit_count: int = 0, creg_count: int = 0, breg_count:
int = 0)→ Kernel

__init__(self, name: str, platform: Platform, qubit_count: int = 0, creg_count: int = 0)→ Kernel
__init__(self, name: str, platform: Platform, qubit_count: int = 0)→ Kernel
__init__(self, name: str, platform: Platform)→ Kernel

get_custom_instructions(self)→ str
Old alias for dump_custom_instructions(). Deprecated.

Parameters None –

Returns A newline-separated list of all custom gates supported by the platform.

Return type str

print_custom_instructions(self)→ None
Prints a list of all custom gates supported by the platform.

Parameters None –

Returns

Return type None

dump_custom_instructions(self)→ str
Returns the result of print_custom_instructions() as a string.

Parameters None –

Returns A newline-separated list of all custom gates supported by the platform.

Return type str

gate_preset_condition(self, condstring: str, condregs: List[int])→ None
Sets the condition for all gates subsequently added to this kernel. Thus, essentially shorthand notation.
Reset with gate_clear_condition().

Parameters

• condstring (str) – Must be one of:

– ”COND_ALWAYS” or “1”: no condition; gate is always executed.

– ”COND_NEVER” or “0”: no condition; gate is never executed.

– ”COND_UNARY” or “” (empty): gate is executed if the single bit specified via con-
dregs is 1.

– ”COND_NOT” or “!”: gate is executed if the single bit specified via condregs is 0.

– ”COND_AND” or “&”: gate is executed if the two bits specified via condregs are both
1.

– ”COND_NAND” or “!&”: gate is executed if either of the two bits specified via con-
dregs is zero.

– ”COND_OR” or “|”: gate is executed if either of the two bits specified via condregs is
one.

– ”COND_NOR” or “!|”: no condition; gate is always executed.

1.7. Python API 53

OpenQL

• condregs (List[int]) – Depending on condstring, must be a list of 0, 1, or 2 breg
indices.

Returns

Return type None

gate_clear_condition(self)→ None
Clears a condition previously set via gate_preset_condition().

Parameters None –

Returns

Return type None

gate(self, name: str, q0: int)→ None
gate(self, name: str, q0: int, q1: int)→ None
gate(self, name: str, qubits: List[int], duration: int = 0, angle: float = 0.0, bregs: List[int], condstring:

str, condregs: List[int])→ None
gate(self, name: str, qubits: List[int], duration: int = 0, angle: float = 0.0, bregs: List[int], condstring:

str)→ None
gate(self, name: str, qubits: List[int], duration: int = 0, angle: float = 0.0, bregs: List[int])→ None
gate(self, name: str, qubits: List[int], duration: int = 0, angle: float = 0.0)→ None
gate(self, name: str, qubits: List[int], duration: int = 0)→ None
gate(self, name: str, qubits: List[int])→ None
gate(self, name: str, qubits: List[int], destination: CReg)→ None
gate(self, u: Unitary, qubits: List[int])→ None

Main function for appending arbitrary quantum gates.

Parameters

• name (str) – The name of the gate. Note that OpenQL currently uses string comparisons
with these names all over the place to derive functionality, and to derive what the actual
arguments do. This is inherently a bad idea and something we want to move away from, so
documenting it all would not be worthwhile. For now, just use common sense, and you’ll
probably be okay.

• q0 (int) – Index of the first qubit to apply the gate to. For controlled gates, this is the
control qubit.

• q1 (int) – Index of the second qubit to apply the gate to. For controlled gates, this is the
target qubit.

• qubits (List[int]) – The full list of qubit indices to apply the gate to.

• duration (int) – Gate duration in nanoseconds, or 0 to use the default value from the
platform configuration file. This is primarily intended to be used for wait gates.

• angle (float) – Rotation angle in radians for gates that use it (rx, ry, rz, etc). Ignored
for all other gates.

• bregs (List[int]) – The full list of bit register argument indices for the gate, exclud-
ing any bit registers used for conditional execution. Currently only used for the measure
gate, which may be given an explicit bit register index to return its result in. If no such
register is specified, the result is assumed to implicitly go to the bit register with the same
index as the qubit being measured. Ignored for gates that don’t use bit registers.

• condstring (str) – If specified, must be one of:

– ”COND_ALWAYS” or “1”: no condition; gate is always executed.

– ”COND_NEVER” or “0”: no condition; gate is never executed.

54 Chapter 1. How to read the documentation

OpenQL

– ”COND_UNARY” or “” (empty): gate is executed if the single bit specified via con-
dregs is 1.

– ”COND_NOT” or “!”: gate is executed if the single bit specified via condregs is 0.

– ”COND_AND” or “&”: gate is executed if the two bits specified via condregs are both
1.

– ”COND_NAND” or “!&”: gate is executed if either of the two bits specified via con-
dregs is zero.

– ”COND_OR” or “|”: gate is executed if either of the two bits specified via condregs is
one.

– ”COND_NOR” or “!|”: no condition; gate is always executed.

• condregs (List[int]) – Depending on condstring, must be a list of 0, 1, or 2 breg
indices.

• destination (CReg) – An integer control register that receives the result of the mixed
quantum-classical gate identified by name.

• u (Unitary) – The unitary gate to insert.

Returns

Return type None

condgate(self, name: str, qubits: List[int], condstring: str, condregs: List[int])→ None
Alternative function for appending normal conditional quantum gates. Avoids having to specify duration,
angle, and bregs for gates that don’t need it.

Parameters

• name (str) – The name of the gate. Note that OpenQL currently uses string comparisons
with these names all over the place to derive functionality, and to derive what the actual
arguments do. This is inherently a bad idea and something we want to move away from, so
documenting it all would not be worthwhile. For now, just use common sense, and you’ll
probably be okay.

• qubits (List[int]) – The full list of qubit indices to apply the gate to.

• condstring (str) – If specified, must be one of:

– ”COND_ALWAYS” or “1”: no condition; gate is always executed.

– ”COND_NEVER” or “0”: no condition; gate is never executed.

– ”COND_UNARY” or “” (empty): gate is executed if the single bit specified via con-
dregs is 1.

– ”COND_NOT” or “!”: gate is executed if the single bit specified via condregs is 0.

– ”COND_AND” or “&”: gate is executed if the two bits specified via condregs are both
1.

– ”COND_NAND” or “!&”: gate is executed if either of the two bits specified via con-
dregs is zero.

– ”COND_OR” or “|”: gate is executed if either of the two bits specified via condregs is
one.

– ”COND_NOR” or “!|”: no condition; gate is always executed.

• condregs (List[int]) – Depending on condstring, must be a list of 0, 1, or 2 breg
indices.

1.7. Python API 55

OpenQL

Returns

Return type None

classical(self, destination: CReg, operation: Operation)→ None
classical(self, operation: str)→ None

Appends a classical assignment gate to the circuit. The classical integer register is assigned to the result of
the given operation.

Parameters

• destination (CReg) – An integer control register at the left-hand side of the classical
assignment gate.

• operation (Operation) – The expression to evaluate on the right-hand side of the
classical assignment gate.

Returns

Return type None

identity(self, q0: int)→ None
Shorthand for an “identity” gate with a single qubit.

Parameters q0 (int) – The qubit to apply the gate to.

Returns

Return type None

hadamard(self, q0: int)→ None
Shorthand for appending a “hadamard” gate with a single qubit.

Parameters q0 (int) – The qubit to apply the gate to.

Returns

Return type None

s(self, q0: int)→ None
Shorthand for appending an “s” gate with a single qubit.

Parameters q0 (int) – The qubit to apply the gate to.

Returns

Return type None

sdag(self, q0: int)→ None
Shorthand for appending an “sdag” gate with a single qubit.

Parameters q0 (int) – The qubit to apply the gate to.

Returns

Return type None

t(self, q0: int)→ None
Shorthand for appending a “t” gate with a single qubit.

Parameters q0 (int) – The qubit to apply the gate to.

Returns

Return type None

tdag(self, q0: int)→ None
Shorthand for appending a “tdag” gate with a single qubit.

56 Chapter 1. How to read the documentation

OpenQL

Parameters q0 (int) – The qubit to apply the gate to.

Returns

Return type None

x(self, q0: int)→ None
Shorthand for appending an “x” gate with a single qubit.

Parameters q0 (int) – The qubit to apply the gate to.

Returns

Return type None

y(self, q0: int)→ None
Shorthand for appending a “y” gate with a single qubit.

Parameters q0 (int) – The qubit to apply the gate to.

Returns

Return type None

z(self, q0: int)→ None
Shorthand for appending a “z” gate with a single qubit.

Parameters q0 (int) – The qubit to apply the gate to.

Returns

Return type None

rx90(self, q0: int)→ None
Shorthand for appending an “rx90” gate with a single qubit.

Parameters q0 (int) – The qubit to apply the gate to.

Returns

Return type None

mrx90(self, q0: int)→ None
Shorthand for appending an “mrx90” gate with a single qubit.

Parameters q0 (int) – The qubit to apply the gate to.

Returns

Return type None

rx180(self, q0: int)→ None
Shorthand for appending an “rx180” gate with a single qubit.

Parameters q0 (int) – The qubit to apply the gate to.

Returns

Return type None

ry90(self, q0: int)→ None
Shorthand for appending an “ry90” gate with a single qubit.

Parameters q0 (int) – The qubit to apply the gate to.

Returns

Return type None

1.7. Python API 57

OpenQL

mry90(self, q0: int)→ None
Shorthand for appending an “mry90” gate with a single qubit.

Parameters q0 (int) – The qubit to apply the gate to.

Returns

Return type None

ry180(self, q0: int)→ None
Shorthand for appending an “ry180” gate with a single qubit.

Parameters q0 (int) – The qubit to apply the gate to.

Returns

Return type None

rx(self, q0: int, angle: float)→ None
Shorthand for appending an “rx” gate with a single qubit and the given rotation in radians.

Parameters

• q0 (int) – The qubit to apply the gate to.

• angle (float) – The rotation angle in radians.

Returns

Return type None

ry(self, q0: int, angle: float)→ None
Shorthand for appending an “ry” gate with a single qubit and the given rotation in radians.

Parameters

• q0 (int) – The qubit to apply the gate to.

• angle (float) – The rotation angle in radians.

Returns

Return type None

rz(self, q0: int, angle: float)→ None
Shorthand for appending an “rz” gate with a single qubit and the given rotation in radians.

Parameters

• q0 (int) – The qubit to apply the gate to.

• angle (float) – The rotation angle in radians.

Returns

Return type None

measure(self, q0: int)→ None
measure(self, q0: int, b0: int)→ None

Shorthand for appending a “measure” gate with a single qubit and implicit or explicit result bit register.

Parameters

• q0 (int) – The qubit to measure.

• b0 (int) – The bit register to store the result in. If not specified, the result will be placed
in the bit register corresponding to the index of the measured qubit.

Returns

58 Chapter 1. How to read the documentation

OpenQL

Return type None

prepz(self, q0: int)→ None
Shorthand for appending a “prepz” gate with a single qubit.

Parameters q0 (int) – The qubit to prepare in the Z basis.

Returns

Return type None

cnot(self, q0: int, q1: int)→ None
Shorthand for appending a “cnot” gate with two qubits.

Parameters

• q0 (int) – The control qubit index.

• q1 (int) – The target qubit index

Returns

Return type None

cphase(self, q0: int, q1: int)→ None
Shorthand for appending a “cphase” gate with two qubits.

Parameters

• q0 (int) – The first qubit index.

• q1 (int) – The second qubit index.

Returns

Return type None

cz(self, q0: int, q1: int)→ None
Shorthand for appending a “cz” gate with two qubits.

Parameters

• q0 (int) – The first qubit index.

• q1 (int) – The second qubit index.

Returns

Return type None

toffoli(self, q0: int, q1: int, q2: int)→ None
Shorthand for appending a “toffoli” gate with three qubits.

Parameters

• q0 (int) – The first control qubit index.

• q1 (int) – The second control qubit index.

• q2 (int) – The target qubit index.

Returns

Return type None

clifford(self, id: int, q0: int)→ None
Shorthand for appending the Clifford gate with the specific number using the minimal number of rx90,
rx180, mrx90, ry90, ry180, and mry90 gates.

1.7. Python API 59

OpenQL

Parameters

• id (int) – The Clifford gate expansion index:

– 0: no gates inserted.

– 1: ry90; rx90

– 2: mrx90, mry90

– 3: rx180

– 4: mry90, mrx90

– 5: rx90, mry90

– 6: ry180

– 7: mry90, rx90

– 8: rx90, ry90

– 9: rx180, ry180

– 10: ry90, mrx90

– 11: mrx90, ry90

– 12: ry90, rx180

– 13: mrx90

– 14: rx90, mry90, mrx90

– 15: mry90

– 16: rx90

– 17: rx90, ry90, rx90

– 18: mry90, rx180

– 19: rx90, ry180

– 20: rx90, mry90, rx90

– 21: ry90

– 22: mrx90, ry180

– 23: rx90, ry90, mrx90

• q0 (int) – The target qubit.

Returns

Return type None

wait(self, qubits: List[int], duration: int)→ None
Shorthand for appending a “wait” gate with the specified qubits and duration in nanoseconds. If no qubits
are specified, the wait applies to all qubits instead (a wait with no qubits is meaningless). Note that the
duration will usually end up being rounded up to multiples of the platform’s cycle time.

Parameters

• qubits (List[int]) – The list of qubits to apply the wait gate to. If empty, the list
will be replaced with the set of all qubits.

• duration (int) – The duration of the wait gate in nanoseconds.

60 Chapter 1. How to read the documentation

OpenQL

Returns

Return type None

barrier(self, qubits: List[int])→ None
barrier(self)→ None

Shorthand for appending a “wait” gate with the specified qubits and duration 0. If no qubits are specified,
the wait applies to all qubits instead (a wait with no qubits is meaningless).

Parameters qubits (List[int]) – The list of qubits to apply the wait gate to. If empty or
unspecified, the list will be replaced with the set of all qubits.

Returns

Return type None

display(self)→ None
Shorthand for appending a “display” gate with no qubits.

Parameters None –

Returns

Return type None

controlled(self, k: Kernel, control_qubits: List[int], ancilla_qubits: List[int])→ None
Appends a controlled kernel. The number of control and ancilla qubits must be equal.

Parameters

• k (Kernel) – The kernel to make controlled.

• control_qubits (List[int]) – The qubits that control the kernel.

• ancilla_qubits (List[int]) – The ancilla qubits to use to make the kernel con-
trolled. The number of ancilla qubits must equal the number of control qubits.

Returns

Return type None

conjugate(self, k: Kernel)→ None
Appends the conjugate of the given kernel to this kernel.

NOTE: this high-level functionality is poorly/not maintained, and relies on default gates, which are on the
list for removal.

Parameters k (Kernel) – The kernel to conjugate.

Returns

Return type None

class openql.CReg(id)
Wrapper for a classical integer register with the given index.

NOTE: classical logic is on the list to be completely revised. This interface may change in the (near) future.

__init__(self, id: int)→ CReg

class openql.Operation(*args)
Wrapper for a classical operation.

A classical operation acts as a simple expression that returns an integer or a boolean. The expression can be a
literal number (val), a single CReg (lop, primarily used for assignments), a unary function applied to one CReg
(op/rop), or a binary function applied to two CRegs (lop/op/rop).

1.7. Python API 61

OpenQL

Function selection is done via strings. The following unary functions are recognized:

• ‘~’: bitwise NOT.

The following binary functions are recognized:

• ‘+’: addition.

• ‘-‘: subtraction.

• ‘&’: bitwise AND.

• ‘|’: bitwise OR.

• ‘^’: bitwise XOR.

• ‘==’: equality.

• ‘!=’: inequality.

• ‘>’: greater-than.

• ‘>=’: greater-or-equal.

• ‘<’: less-than.

• ‘<=’: less-or-equal.

NOTE: classical logic is on the list to be completely revised. This interface may change in the (near) future.

__init__(self, lop: CReg, op: str, rop: CReg)→ Operation
__init__(self, op: str, rop: CReg)→ Operation
__init__(self, lop: CReg)→ Operation
__init__(self, val: int)→ Operation

class openql.Unitary(name, matrix)
Unitary matrix interface.

The constructor creates a unitary gate from the given row-major, square, unitary matrix.

property name
The name given to the unitary gate.

__init__(self, name: str, matrix: vectorc)→ Unitary

decompose(self)→ None
Explicitly decomposes the gate. Does not need to be called; it will be called automatically when the gate
is added to the kernel.

Parameters None –

Returns

Return type None

static is_decompose_support_enabled()→ bool
Returns whether OpenQL was built with unitary decomposition support enabled.

Parameters None –

Returns Whether OpenQL was built with unitary decomposition support enabled.

Return type bool

class openql.Compiler(*args)
Wrapper for the compiler/pass manager.

62 Chapter 1. How to read the documentation

OpenQL

This allows you to change the compilation strategy, if the defaults are insufficient for your application. You can
get access to a Compiler via several methods:

• using Platform.get_compiler();

• using Program.get_compiler();

• using one of the constructors.

Using the constructors, you can get an empty compiler (by specifying no arguments or only specifying name),
a default compiler for a given platform (by specifying a name and a platform), or a compiler based on a
compiler configuration JSON file (by specifying a name and a filename). For the structure of this JSON
file, refer to the configuration section of the ReadTheDocs documentation or, equivalently, the result of
openql.print_compiler_docs().

property name
User-given name for this compiler.

NOTE: not actually used for anything. It’s only here for consistency with the rest of the API objects.

__init__(self, name: str)→ Compiler
__init__(self)→ Compiler
__init__(self, name: str, filename: str)→ Compiler
__init__(self, name: str, platform: Platform)→ Compiler

print_pass_types(self)→ None
Prints documentation for all available pass types, as well as the option documentation for the passes.

Parameters None –

Returns

Return type None

dump_pass_types(self)→ str
Returns documentation for all available pass types, as well as the option documentation for the passes.

Parameters None –

Returns The list of pass types and their documentation as a multiline string.

Return type str

print_strategy(self)→ None
Prints the currently configured compilation strategy.

Parameters None –

Returns

Return type None

dump_strategy(self)→ str
Returns the currently configured compilation strategy as a string.

Parameters None –

Returns The current compilation strategy as a multiline string.

Return type str

set_option(self, path: str, value: str, must_exist: bool = True)→ int
set_option(self, path: str, value: str)→ int

Sets a pass option. The path must consist of the target pass instance name and the option name, separated
by a period. The former may include * or ? wildcards. If must_exist is set an exception will be thrown if
none of the passes were affected, otherwise 0 will be returned.

1.7. Python API 63

OpenQL

Parameters

• path (str) – The path to the option, consisting of the pass name and the option name
separated by a period.

• value (str) – The value to set the option to.

• must_exist (bool) – When set, an exception will be thrown when no options matched
the path.

Returns The number of pass options affected.

Return type int

get_option(self, path: str)→ str
Returns the current value of an option.

Parameters path (str) – The path to the option, consisting of pass name and the actual option
name separated by a period.

Returns The value of the option. If the option has not been set, the default value is returned.

Return type str

append_pass(self, type_name: str, instance_name: str, options: Dict[str, str])→ Pass
append_pass(self, type_name: str, instance_name: str)→ Pass
append_pass(self, type_name: str)→ Pass

Appends a pass to the end of the pass list. Returns a reference to the constructed pass.

Parameters

• type_name (str) – The type of the pass to add.

• instance_name (str) – A unique name for the pass instance. If empty or unspecified,
a name will be generated.

• options (dict[str, str]) – A list of initial options to set for the pass. This is just
shorthand notation for calling set_option() on the returned Pass object.

Returns A reference to the added pass.

Return type Pass

prefix_pass(self, type_name: str, instance_name: str, options: Dict[str, str])→ Pass
prefix_pass(self, type_name: str, instance_name: str)→ Pass
prefix_pass(self, type_name: str)→ Pass

Appends a pass to the beginning of the pass list. Returns a reference to the constructed pass.

Parameters

• type_name (str) – The type of the pass to add.

• instance_name (str) – A unique name for the pass instance. If empty or unspecified,
a name will be generated.

• options (dict[str, str]) – A list of initial options to set for the pass. This is just
shorthand notation for calling set_option() on the returned Pass object.

Returns A reference to the added pass.

Return type Pass

insert_pass_after(self, target: str, type_name: str, instance_name: str, options: Dict[str, str])→
Pass

insert_pass_after(self, target: str, type_name: str, instance_name: str)→ Pass

64 Chapter 1. How to read the documentation

OpenQL

insert_pass_after(self, target: str, type_name: str)→ Pass
Inserts a pass immediately after the target pass (named by instance). If target does not exist, an exception
is thrown. Returns a reference to the constructed pass.

Parameters

• target (str) – The name of the pass to insert the new pass after.

• type_name (str) – The type of the pass to add.

• instance_name (str) – A unique name for the pass instance. If empty or unspecified,
a name will be generated.

• options (dict[str, str]) – A list of initial options to set for the pass. This is just
shorthand notation for calling set_option() on the returned Pass object.

Returns A reference to the added pass.

Return type Pass

insert_pass_before(self, target: str, type_name: str, instance_name: str, options: Dict[str, str])
→ Pass

insert_pass_before(self, target: str, type_name: str, instance_name: str)→ Pass
insert_pass_before(self, target: str, type_name: str)→ Pass

Inserts a pass immediately before the target pass (named by instance). If target does not exist, an exception
is thrown. Returns a reference to the constructed pass.

Parameters

• target (str) – The name of the pass to insert the new pass before.

• type_name (str) – The type of the pass to add.

• instance_name (str) – A unique name for the pass instance. If empty or unspecified,
a name will be generated.

• options (dict[str, str]) – A list of initial options to set for the pass. This is just
shorthand notation for calling set_option() on the returned Pass object.

Returns A reference to the added pass.

Return type Pass

get_pass(self, target: str)→ Pass
Returns a reference to the pass with the given instance name. If no such pass exists, an exception is thrown.

Parameters target (str) – The name of the pass to retrieve a reference to.

Returns A reference to the targeted pass.

Return type Pass

does_pass_exist(self, target: str)→ bool
Returns whether a pass with the target instance name exists.

Parameters target (str) – The name of the pass to query existence of.

Returns Whether a pass with the target name exists.

Return type bool

get_num_passes(self)→ int
Returns the total number of passes in the root hierarchy.

Parameters None –

Returns The number of passes (or groups) within the root pass list.

1.7. Python API 65

OpenQL

Return type int

get_passes(self)→ List[Pass]
Returns a list with references to all passes in the root hierarchy.

Parameters None –

Returns The list of all passes in the root hierarchy.

Return type list[Pass]

get_passes_by_type(self, target: str)→ List[Pass]
Returns a list with references to all passes in the root hierarchy with the given type.

Parameters target (str) – The target pass type name.

Returns The list of all passes in the root hierarchy with the given type.

Return type list[Pass]

remove_pass(self, target: str)→ None
Removes the pass with the given target instance name, or throws an exception if no such pass exists.

Parameters target (str) – The name of the pass to remove.

Returns

Return type None

clear_passes(self)→ None
Clears the entire pass list.

Parameters None –

Returns

Return type None

compile(self, program: Program)→ None
Ensures that all passes have been constructed, and then runs the passes on the given program. This is the
same as Program.compile() when the program is referencing the same compiler.

Parameters program (Program) – The program to compile.

Returns

Return type None

class openql.Pass
Wrapper for a pass that belongs to some pass manager.

NOTE: while it’s possible to construct a pass manually, the resulting object cannot be used in any way. The only
way to obtain a valid pass object is through a Compiler object.

__init__(self)→ Pass

get_type(self)→ str
Returns the full, desugared type name that this pass was constructed with.

Parameters None –

Returns The type name.

Return type str

get_name(self)→ str
Returns the instance name of the pass within the surrounding group.

66 Chapter 1. How to read the documentation

OpenQL

Parameters None –

Returns The instance name.

Return type str

print_pass_documentation(self)→ None
Prints the documentation for this pass.

Parameters None –

Returns

Return type None

dump_pass_documentation(self)→ str
Returns the documentation for this pass as a string.

Parameters None –

Returns The documentation for this pass as a multiline string.

Return type str

print_options(self, only_set: bool = False)→ None
print_options(self)→ None

Prints the current state of the options.

Parameters only_set (bool) – When set, only the options that were explicitly configured
are dumped.

Returns

Return type None

dump_options(self, only_set: bool = False)→ str
dump_options(self)→ str

Returns the string printed by print_options().

Parameters only_set (bool) – When set, only the options that were explicitly configured
are dumped.

Returns The option documentation as a multiline string.

Return type str

set_option(self, option: str, value: str)→ None
Sets an option.

Parameters

• option (str) – The option name.

• value (str) – The value to set the option to.

Returns

Return type None

get_option(self, option: str)→ str
Returns the current value of an option.

Parameters path (str) – The path to the option.

Returns The value of the option. If the option has not been set, the default value is returned.

Return type str

1.7. Python API 67

OpenQL

class openql.cQasmReader(*args)
cQASM reader interface.

To read a cQASM file, build a cQASM reader for the an already-existing program, and then call file2circuit
or string2circuit to add the kernels from the cQASM file/string to the program. Optionally a platform can be
specified as well, but this is redundant (it must be the same platform as the one that the program was constructed
with); these overloads only exist for backward compatibility.

Because OpenQL supports custom gates and cQASM (historically) does not, and also because OpenQL’s inter-
nal representation of gates is still a bit different from what cQASM uses, you may need custom conversion rules
for the gates. This can be done by specifying a gateset configuration JSON file using gateset_fname. This file
must consist of a JSON array containing objects with the following structure:

{
"name": "<name>", # mandatory
"params": "<typespec>", # mandatory
"allow_conditional": <bool>, # whether conditional gates of this type are

→˓accepted, defaults to true
"allow_parallel": <bool>, # whether parallel gates of this type are

→˓accepted, defaults to true
"allow_reused_qubits": <bool>, # whether reused qubit args for this type are

→˓accepted, defaults to false
"ql_name": "<name>", # defaults to "name"
"ql_qubits": [# list or "all", defaults to the "Q" args

0, # hardcoded qubit index
"%0" # reference to argument 0, which can be a

→˓qubitref, bitref, or int
],
"ql_cregs": [# list or "all", defaults to the "I" args

0, # hardcoded creg index
"%0" # reference to argument 0, which can be an

→˓int variable reference, or int for creg index
],
"ql_bregs": [# list or "all", defaults to the "B" args

0, # hardcoded breg index
"%0" # reference to argument 0, which can be an

→˓int variable reference, or int for creg index
],
"ql_duration": 0, # duration; int to hardcode or "%i" to take

→˓from param i (must be of type int), defaults to 0
"ql_angle": 0.0, # angle; float to hardcode or "%i" to take

→˓from param i (must be of type int or real), defaults to first arg of type real
→˓or 0.0

"ql_angle_type": "<type>", # interpretation of angle arg; one of "rad"
→˓(radians), "deg" (degrees), or "pow2" (2pi/2^k radians), defaults to "rad"

"implicit_sgmq": <bool>, # if multiple qubit args are present, a
→˓single-qubit gate of this type should be replicated for these qubits (instead
→˓of a single gate with many qubits)

"implicit_breg": <bool> # the breg operand(s) that implicitly belongs
→˓to the qubit operand(s) in the gate should be added to the OpenQL operand list
}

The typespec string defines the expected argument types for the gate. Each character in the string represents an
argument. The following characters are supported by libqasm:

• Q = qubit

• B = assignable bit/boolean (measurement register)

• b = bit/boolean

68 Chapter 1. How to read the documentation

OpenQL

• a = axis (x, y, or z)

• I = assignable integer

• i = integer

• r = real

• c = complex

• u = complex matrix of size 4^n, where n is the number of qubits in the parameter list (automatically
deduced)

• s = (quoted) string

• j = json

Note that OpenQL only uses an argument if it is referred to in one of the “ql_*” keys, either implicitly or
explicitly.

property platform
The platform associated with the reader.

property program
The program that the cQASM circuits will be added to.

__init__(self, platform: Platform, program: Program, gateset_fname: str)→ cQasmReader
__init__(self, platform: Platform, program: Program)→ cQasmReader
__init__(self, program: Program, gateset_fname: str)→ cQasmReader
__init__(self, program: Program)→ cQasmReader

string2circuit(self, cqasm_str: str)→ None
Interprets a string as cQASM file and adds its contents to the program associated with this reader.

Parameters cqasm_str (str) – The string representing the contents of the cQASM file.

Returns

Return type None

file2circuit(self, cqasm_file_path: str)→ None
Interprets a string as cQASM file and adds its contents to the program associated with this reader.

Parameters cqasm_file_path (str) – The path to the cQASM file to load.

Returns

Return type None

1.8 C++ API

If you’re more of a C++ than a Python person, the same API exposed to Python can also be used from within C++.

There is currently no supported way to install OpenQL as a system library. Instead, you can use CMake to include
OpenQL as a dependency of your program. This is pretty straight-forward:

cmake_minimum_required(VERSION 3.1 FATAL_ERROR)

This would be just add_subdirectory(OpenQL) for your program, or perhaps
add_subdirectory(deps/OpenQL) if you prefer; wherever your OpenQL git
submodule is.
add_subdirectory(../.. OpenQL)

(continues on next page)

1.8. C++ API 69

OpenQL

(continued from previous page)

Use whatever CMake magic you need to build your program, but linking
something against OpenQL should be as easy as the second line. This should
take care of both the libraries and header file include directories.
add_executable(example example.cc)
target_link_libraries(example ql)

With that configuration, #include <openql> becomes available, which places the OpenQL API in the ql names-
pace. Here’s a basic example of what a program might look like:

#include <iostream>
#include <openql>

int main(int argc, char **argv) {
// create platform
auto platf = ql::Platform("seven_qubits_chip", "cc_light");

// create program
auto prog = ql::Program("aProgram", platf, 2);

// create kernel
auto k = ql::Kernel("aKernel", platf, 2);

k.gate("prepz", 0);
k.gate("prepz", 1);
k.gate("x", 0);
k.gate("y", 1);
k.measure(0);
k.measure(1);

// add kernel to program
prog.add_kernel(k);

// compile the program
prog.compile();

std::cout << "Seems good to me!" << std::endl;
return 0;

}

The API is documented here.

Note: The API classes are merely wrappers of the classes used internally by OpenQL. You can of course also use the
internal classes, but their interfaces should not be assumed to be stable from version to version.

70 Chapter 1. How to read the documentation

doxy/namespaceql_1_1api.html

OpenQL

1.9 Configuration

Configurability is a primary design goal of OpenQL: instead of hardcoding the way in which an algorithm is compiled
for a particular platform, both the platform and the strategy for compiling to it are completely configurable. As such,
OpenQL has quite a complex configuration system.

Most of the configuration is provided to OpenQL via JSON files. OpenQL uses a superset of the JSON file format
for all input files, namely one that allows //-based single-line comments; therefore, a configuration file written for
OpenQL is not strictly valid JSON, but OpenQL can parse any valid JSON file (as long as it complies with the expected
structure).

The two most important configuration file types are the platform and compiler configuration files.

• The platform configuration file includes everything OpenQL needs to know about the target platform (i.e., what
the quantum chip and microarchitecture looks like), and optionally includes information about how to compile
for it. This file is passed to OpenQL when you construct a ql.Platform. OpenQL also has a number of
default platform configuration files built into it; one for each architecture variant. Furthermore, architecture
variants may include preprocessing logic for the platform configuration file, such that repetitive things for a
particular platform can automatically be expanded; in this case, the description below documents the resulting
structure, not necessarily what you would write (although the preprocessing logic should be minimal, such as
only providing additional default values). See also the section on supported architectures.

• The compiler configuration file describes the steps that OpenQL should take to transform the incoming program
to something that can run on the platform (or at least is no further away from being able to run on it). This is
also referred to as the pass list or compilation strategy. Besides configuration via JSON, the strategy can also
be configured using the Python/C++ API directly; this is particularly useful when you for example only want
to insert a visualizer pass into the existing, default pass list, or when you’re doing design-space exploration to
determine the optimal compilation strategy for a particular algorithm.

The structure of these files is documented below.

1.9.1 Platform configuration

The platform configuration JSON file (or JSON data, as it’s not necessarily always in file form) represents a complete
description of what the target platform looks like, and optionally how to compile for it. At the top level, the structure
is a JSON object, with the following keys recognized by OpenQL’s platform-agnostic logic, customarily written in the
following order.

• "eqasm_compiler": an optional description of how to compile for this platform.

• "hardware_settings": contains basic descriptors for the hardware, such as qubit count and cycle time.

• "topology": optionally provides a more in-depth description of how the qubits are organized.

• "resources": optionally provides information about scheduling constraints, for example due to a number of
qubits sharing a single waveform generator.

• "instructions": lists the instruction set supported by the platform.

• "gate_decomposition": optionally lists a set of decomposition rules that are immediately applied when
a gate with a particular name is added.

Note: The plan is to move away from on-the-fly gate decomposition, and instead make a gate decomposition pass.
The exact design for this has not been made yet, but it’s possible that the gate decomposition section will change in
minor ways in the future, or will be deprecated in favor of an entirely new configuration file section.

1.9. Configuration 71

OpenQL

Depending on the architecture being compiled for, as specified through the "eqasm_compiler" key or via the com-
piler configuration file override during platform construction, additional sections or keys may be optional or required,
or entire sections may even be generated. Refer to the architecture documentation for details to this end. The "none"
architecture by definition does not do any of this, and can thus always be used as an override of sorts for this behavior;
the only thing that the architecture variant specification does is provide better defaults for the platform and compiler
configuration, so everything can always be specified using the "none" architecture if need be. The remainder of this
page thus describes the “universal” structure as used by "none", while the architecture documentation may make
achitecture-specific addenda.

In addition, passes are allowed to make use of additional structures in the configuration file. This implies that the
common OpenQL code will not check for or warn you about unrecognized keys: it assumes that these will be read by
something it is not aware of.

"eqasm_compiler" section

The "eqasm_compiler" key can take assume of the following types of values.

• No value/unspecified: the defaults for the “none” architecture will implicitly be used.

• A string matching one of the available architectures or architecture variants, for example "cc" or "cc_light.
s7": the defaults for that architecture (variant) will be used. Legacy values, such as "eqasm_compiler_cc"
or "qx" may also be used. Refer to the architecture documentation for a full and up-to-date list of recognized
values.

• A filename: the specified file will be interpreted as a compiler configuration file, fully specifying what the
compiler looks like.

• A JSON object: the contents of the object will be interpreted as a compiler configuration file, again fully
specifying what the compiler looks like, but without the extra file indirection.

This key can also be completely overridden by explicitly specifying a compiler configuration file during platform
construction, thus allowing the platform and compiler configuration files to be completely disjoint, if this is preferred
for the intended application.

"hardware_settings" section

This must map to an object containing the basic parameters that describe the platform. OpenQL’s common code
recognizes the following.

• "qubit_number": must map to an integer specifying the total number of qubits in the platform. Qubit
indices start at zero, so all indices must be in the range 0..N-1, where N is this value.

• "creg_number": optionally specifies the number of 32-bit integer classical registers available in the platform.
If not specified, the value will be inferred from the constructor of ql.Program.

• "breg_number": optionally specifies the number of single-bit classical registers available in the platform,
used for receiving measurement results and predicates. If not specified, the value will be inferred from the
constructor of ql.Program.

• "cycle_time": optionally specifies the cycle time used by the platform in nanoseconds. Currently this must
be an integer value. If not specified, 1 will be used as a default, thus equating the nanosecond values to cycle
values.

72 Chapter 1. How to read the documentation

OpenQL

"topology" section

The topology JSON object must have the following structure.

{
"form": <optional string, either "xy" or "irregular">,
"x_size": <optional integer for form="xy">,
"y_size": <optional integer for form="xy">,
"qubits": <mandatory array of objects for form="xy", unused for "irregular">,
"number_of_cores": <optional positive integer, default 1>,
"comm_qubits_per_core": <optional positive integer, num_qubits / number_of_cores>,
"connectivity": <optional string, either "specified" or "full">,
"edges": <mandatory array of objects for connectivity="specified", unused for

→˓"full">
...

}

The "form" key specifies whether the qubits can be arranged in a 2D grid of integer coordinates ("xy") or not
("irregular"). If irregular, mapper heuristics that rely on sorting possible paths by angle are unavailable. If
"xy", "x_size" and "y_size" specify the coordinate ranges (from zero to the limit minus one), and "qubits"
specifies the coordinates. "qubits" must then be an array of objects of the following form:

{
"id": <qubit index, mandatory>,
"x": <X coordinate, mandatory>,
"y": <Y coordinate, mandatory>,
...

}

Each qubit must be specified exactly once. Any additional keys in the object are silently ignored, as other parts of
OpenQL may use the structure as well.

If the "form" key is missing, its value is derived from whether a "qubits" list is given. If "x_size" or
"y_size" are missing, the values are inferred from the largest coordinate found in "qubits".

The "number_of_cores" key is used to specify multi-core architectures. It must be a positive integer. Each core
is assumed to have the same number of qubits, so the total number of qubits must be divisible by this number. The
first N qubits belong to core 0, the next N belong to core 1, etc, where N equals the total number of qubits divided by
the number of cores.

Cores can communicate only via communication qubits. The amount of these qubits per cores may be set using the
"comm_qubits_per_core" key. Its value must range between 1 and the number of qubits per core, and defaults
to the latter. The first N qubits for each core are considered to be communication qubits, whereas the remainder are
local qubits.

The "connectivity" key specifies whether there are qubit connectivity constraints ("specified") or all qubits
(within a core) are connected ("full"). In the former case, the "edges" key must map to an array of objects of the
following form:

{
"id": <optional unique identifying integer>,
"src": <source qubit index, mandatory>,
"dst": <target qubit index, mandatory>,
...

}

Edges are directional; to allow qubits to interact “in both ways,” both directions must be specified. If any identifiers are
specified, all edges should get one, and they should all be unique; otherwise, indices are generated using src*nq+dst.

1.9. Configuration 73

OpenQL

Any additional keys in the object are silently ignored, as other parts of OpenQL may use the structure as well (although
they should preferably just extend this class).

When "connectivity" is set to "full" in a multi-core environment, inter-core edges are only generated when
both the source and destination qubit is a communication qubit.

If the "connectivity" key is missing, its value is derived from whether an “edges” list is given.

Any additional keys in the topology root object are silently ignored, as other parts of OpenQL may use the structure
as well.

"resources" section

Two JSON structures are supported: one for compatibility with older platform configuration files, and one extended
structure. The extended structure has the following syntax:

{
"architecture": <optional string, default "">,
"dnu": <optional list of strings, default []>,
"resources": {

"<name>": {
"type": "<type>",
"config": {

<optional configuration>
}

}
...

}
}

The optional "architecture" key may be used to make shorthands for architecture- specific resources, normally
prefixed with "arch.<architecture>.". If it’s not specified or an empty string, the architecture is derived from
the compiler configuration (either "eqasm_compiler" or as overridden by the compiler configuration file passed
to the platform constructor).

The optional "dnu" key may be used to specify a list of do-not-use resource types (experimental, deprecated, or
any other resource that’s considered unfit for “production” use) that you explicitly want to use, including the "dnu"
namespace they are defined in. Once specified, you’ll be able to use the resource type without the "dnu" namespace
element. For example, if you would include "dnu.whatever" in the list, the resource type "whatever" may be
used to add the resource.

The "resources" key specifies the actual resource list. This consists of a map from unique resource names match-
ing [a-zA-Z0-9_\-]+ to a resource configuration. The configuration object must have a “type” key, which must
identify a resource type that OpenQL knows about. The “config” key is optional, and is used to pass type-specific
configuration data to the resource. If not specified, an empty JSON object will be passed to the resource instead.

If the "resources" key is not present, the old structure is used instead. This has the following simplified form:

{
"<type>": {

<configuration>
},
...

}

74 Chapter 1. How to read the documentation

OpenQL

"instructions" section

This section specifies the instruction set of the architecture. It must be an object, where each key represents the name
of a gate, and the value is again an object, containing any semantical information needed to describe the instruction.

Note: OpenQL currently derives much of the semantics from the gate name. For example, the cQASM writer
determines whether it should emit a gate angle parameter based on whether the name of the gate equals a set of gate
names that would logically have an angle. This is behavior is very much legacy, and is to be replaced with checking
for keys in the instruction definition (though of course using appropriate defaults for backward compatibility).

OpenQL supports two classes of instructions: generalized gates and specialized gates. For generalized gates, the gate
name (i.e. the JSON object key) must be a single identifier matching [a-zA-Z_][a-zA-Z0-9_]*. This means
that the gate can be applied to any set of operands. Specialized gates, on the other hand, have a fixed set of qubit
operands. Their JSON key must be of the form <name> <qubits>, where <name> is as above, and <qubits>
is a comma-separated list (without spaces) of qubit indices, each of the form q<index>. For example, a correct
name for a specialized two-qubit gate would be cz q0,q1. Specialized gates allow different semantical parameters
to be specified for each possible set of qubit operands: for example, the duration for a particular gate on a particular
architecture may depend on the operands.

Note: If you’re using the mapper, and thus the input to your program is unmapped, OpenQL will also use the gate
specializations when the gates still operate on virtual qubits. Therefore, you must specify a specialization for all
possible qubit operand combinations of a particular gate, even if the gate does not exist for a particular combination
due to for example connectivity constraints. Alternatively, you may specify a fallback using a generalized gate, as
OpenQL will favor specialized gates when they exist.

Within the instruction definition object, OpenQL’s architecture/pass-agnostic logic currently only recognizes the fol-
lowing keys.

• "duration" or "duration_cycles": specifies the duration of the instruction in nanoseconds or cycles.
OpenQL currently only supports durations that are an integer number of nanoseconds, so any fractions will be
rounded up to the nearest nanosecond. Furthermore, in almost all contexts, the duration of an instruction will be
rounded up to the nearest integer cycle count.

• "qubits": this must map to a single qubit index or a list of qubit indices that corresponds to the qubits in
the specialization. For generalized instructions, the list must either be empty or unspecified. This field will
be removed in the future as it is redundant, from which point onward it will be ignored. The qubit indices
themselves can be specified as either a string of the form "q<index>" or an integer with just the index.

Note: Older versions of OpenQL recognized and required the existence of many more keys, such as "matrix" and
"latency". All passes relying on this information have since been cleaned out as they were no longer in use, and
all requirements on the existence of these keys have likewise been lifted.

1.9. Configuration 75

OpenQL

"gate_decomposition" section

This section specifies the decomposition rules for gates/instructions that are applied immediately when a gate is con-
structed. If specified, it must be an object, where each key represents the name of the gate, along with capture groups
for the qubit operands. The keys must map to arrays of strings, wherein each string represents a gate in the decompo-
sition.

Examples of two decompositions are shown below. %0 and %1 refer to the first argument and the second argument.
This means according to the decomposition on line 2, rx180 %0 will allow us to decompose rx180 q0 to x q0.
Similarly, the decomposition on line 3 will allow us to decompose cnot q2, q0 to three instructions, namely:
ry90 q0, cz q2, q0, and ry90 q0.

"gate_decomposition": {
"rx180 %0" : ["x %0"],
"cnot %0,%1" : ["ry90 %1","cz %0,%1","ry90 %1"]

}

These decompositions are simple macros (in-place substitutions) which allow programmer to manually specify a
decomposition. These take place at the time of creation of a gate in a kernel. This means the scheduler will schedule
decomposed instructions.

Note: Decomposition rules may only refer to custom gates that have already been defined in the instruction set.

Note: Recursive decomposition rules, i.e. decompositions that make use of other decomposed gate definitions, are
not supported.

Note: These decomposition rules are intended to be replaced by a more powerful system in the future.

1.9.2 Compiler configuration

The compiler configuration JSON file (or JSON substructure) is expected to have the following structure:

{
"architecture": <optional string, default "">,
"dnu": <optional list of strings, default []>,
"pass-options": <optional object, default {}>,
"compatibility-mode": <optional boolean, default false>,
"passes": [

<pass description>
]

}

The optional "architecture" key may be used to make shorthands for architecture- specific passes, normally
prefixed with "arch.<architecture>.". If it’s not specified or an empty string, no shorthand aliases are made.

The optional "dnu" key may be used to specify a list of do-not-use pass types (experimental passes, deprecated
passes, or any other pass that’s considered unfit for “production” use) that you explicitly want to use, including the
“dnu” namespace they are defined in. Once specified, you’ll be able to use the pass type without the "dnu" namespace
element. For example, if you would include "dnu.whatever" in the list, the pass type "whatever" may be used
to add the pass.

76 Chapter 1. How to read the documentation

OpenQL

The optional "pass-options" key may be used to specify options common to all passes. The values may be
booleans, integers, strings, or null, but nothing else. Null is used to reset an option to its hardcoded default value.
An option need not exist for each pass affected by it; if it doesn’t, the default value is silently ignored for that pass.
However, if it does exist, it must be a valid value for the option with that name. These option values propagate through
the pass tree recursively, so setting a default option in the root using this record will affect all passes.

If "compatibility-mode" is enabled, some of OpenQL’s global options add implicit entries to the
"pass-options" structure when set, for backward compatibility. However, entries in "pass-options" al-
ways take precedence. The logic for which options map to which is mostly documented in the global option docs now,
since those options don’t do anything else anymore. Note that the global options by their original design have no way
to specify what pass they refer to, so each option is attempted for each pass type! Which means we have to be a bit
careful with picking option names for the passes that are included in compatibility mode.

Pass descriptions can either be strings (in which case the string is interpreted as a pass type alias and everything else
is inferred/default), or an object with the following structure.

{
"type": <optional string, default "">,
"name": <optional string, default "">,
"options": <optional object, default {}>

}

The "type" key, if specified, must identify a pass type that OpenQL knows about. You can call
print_pass_types() on a ql.Compiler object to get the list of available pass types (and their documentation)
for your particular configuration (just make an empty compiler object initially), or you can read the documentation
section on supported passes. If the "type" key is not specified or empty, a group is made instead, and "group"
must be specified for the group to do anything.

The "name" key, if specified, is a user-defined name for the pass, that must match [a-zA-Z0-9_\-]+ and be
unique within the surrounding pass list. If not specified, a name that complies with these requirements is generated
automatically, but the actual generated name should not be relied upon to be consistent between OpenQL versions.
The name may be used to programmatically refer to passes after construction, and passes may use it for logging or
unique output filenames. However, passes should not use the name for anything that affects the behavior of the pass.

The "options" key, if specified, may be an object that maps option names to option values. The values may be
booleans, integers, strings, or null, but nothing else. Null is used to enforce usage of the OpenQL-default value for the
option. The option names and values must be supported by the particular pass type.

1.10 Supported architectures

This section lists the backend architectures currently supported by OpenQL.

Architectures are organized into families, variants, and platforms. The architecture family typically refers to a partic-
ular control architecture, and may include custom passes and scheduler resources needed to compile for that control
architecture. The variant usually refers to the kind of qubit chip being controlled by said control architecture, such
as surface-5, surface-7, or surface-17 for CC-light. Finally, architecture variants may be configured with a JSON
configuration file to get a complete target description, referred to as the platform.

Note: In older versions of OpenQL, there was no hierarchical definition like this. Instead, there was only a platform,
defined by a hard-to-write JSON configuration file, with a backend selection using the "eqasm_compiler" key
in the configuration file. The new system is fully backward-compatible: you can still just pass any custom JSON
configuration file to the platform constructor, in which case the architecture family will be chosen based on the value in
"eqasm_compiler", and the default variant for that family will be used. The purpose of the new system is to make
the learning curve for using OpenQL less steep; instead of having to pluck one of the many JSON files from OpenQL’s
tests directory and usually needing to modify it manually, you can start off by just using one of the architecture

1.10. Supported architectures 77

OpenQL

variants as default. Furthermore, each architecture variant may have its own set of defaults and preprocessing rules for
the platform configuration file, such that even if you do need to make changes, it should be way easier to do so.

The active architecture is selected in one of the following ways:

• by specifying the namespace name/variant pair for the desired architecture directly to the ql.Platform con-
structor (the architecture will then use the default platform configuration for that pair);

• by specifying a recognized string for the "eqasm_compiler" key in the platform configuration file;

• if "eqasm_compiler" is instead used for an inline compiler configuration, by setting
"eqasm_compiler"."architecture" to the namespace name and variant of the desired architecture;

• if none of the above apply, the dummy “none” architecture will be selected.

The variant is separated from the namespace name or eqasm_compiler name using a ..

Ultimately, the architecture variant system only serves to inject sane defaults into the platform and compiler configu-
ration structures, and to separate unavoidable architecture-specific logic from architecture-agnostic logic in OpenQL’s
codebase. That is, everything boils down to these (internal) platform and compiler configuration structures during
platform construction, after which everything is agnostic to the selected architecture. This means that if you want to
compile for a new architecture that’s sufficiently similar to an existing one to not need any new passes or resources,
you may not even have to change or add to OpenQL’s codebase; you can just use the none.default architecture
and build the platform and compiler configuration structures from scratch. This is intentional: the control architectures
are still as much in flux as the quantum chips themselves, so being able to quickly piece together a compiler for an
architecture we haven’t even thought of yet is important. It’s also very useful for design-space exploration, and doing
research into compilation strategies and control architectures that will become relevant only when the quantum chips
mature further.

1.10.1 QuTech Central Controller

• Pass/resource/C++ namespace: arch.cc

• Acceptable "eqasm_compiler" values: "cc" or "eqasm_backend_cc"

This architecture allows compilation for the QuTech Central Controller, as currently in use in DiCarloLab for the
Starmon chip.

Platform configuration file additions

For the CC backend, contrary to the original one for CC-light, the final hardware output is entirely determined by
the contents of the configuration file. That is, there is no built-in knowledge of instrument connectivity or codeword
organization. This requires a few additional target-specific sections in the platform configuration.

Instrument definitions

The CC-specific "instrument_definitions" section of the configuration file defines immutable properties of
instruments, i.e. independent of the actual control setup. The required structure is as follows:

"instrument_definitions": {
"qutech-qwg": {

"channels": 4,
"control_group_sizes": [1, 4],

},
"zi-hdawg": {

(continues on next page)

78 Chapter 1. How to read the documentation

OpenQL

(continued from previous page)

"channels": 8,
// NB: size=1 needs special treatment of waveforms because one
// AWG unit drives 2 channels
"control_group_sizes": [1, 2, 4, 8],

},
"qutech-vsm": {

"channels": 32,
"control_group_sizes": [1],

},
"zi-uhfqa": {

"channels": 9,
"control_group_sizes": [1],

}
}

In this:

• "channels" defines the number of logical channels of the instrument. For most instruments there is one
logical channel per physical channel, but the ‘zi-uhfqa’ provides 9 logical channels on one physical channel
pair.

• "control_group_sizes" states possible arrangements of channels operating as a vector.

Control modes

The "control_modes" section defines modes to control instruments. These define which bits are used to control
groups of channels and/or get back measurement results. The expected structure is as follows:

"control_modes": {
"awg8-mw-vsm-hack": { // ZI_HDAWG8.py::cfg_codeword_

→˓protocol() == 'microwave'. Old hack to skip DIO[8]
"control_bits": [

[7,6,5,4,3,2,1,0], // group 0
[16,15,14,13,12,11,10,9] // group 1

],
"trigger_bits": [31]

},
"awg8-mw-vsm": { // the way the mode above should have

→˓been
"control_bits": [

[7,6,5,4,3,2,1,0], // group 0
[15,14,13,12,11,10,9,8] // group 1

],
"trigger_bits": [31]

},
"awg8-mw-direct-iq": { // just I&Q to generate microwave

→˓without VSM. HDAWG8: "new_novsm_microwave"
"control_bits": [

[6,5,4,3,2,1,0], // group 0
[13,12,11,10,9,8,7], // group 1
[22,21,20,19,18,17,16], // group 2. NB: starts at bit 16 so

→˓twin-QWG can also support it
[29,28,27,26,25,24,23] // group 4

],
"trigger_bits": [15,31]

},
(continues on next page)

1.10. Supported architectures 79

OpenQL

(continued from previous page)

"awg8-flux": { // ZI_HDAWG8.py::cfg_codeword_
→˓protocol() == 'flux'

// NB: please note that internally one AWG unit handles 2 channels, which
→˓requires special handling of the waveforms

"control_bits": [
[2,1,0], // group 0
[5,4,3],
[8,7,6],
[11,10,9],
[18,17,16], // group 4. NB: starts at bit 16 so

→˓twin-QWG can also support it
[21,20,19],
[24,23,22],
[27,26,25] // group 7

],
"trigger_bits": [31]

},
"awg8-flux-vector-8": { // single code word for 8 flux

→˓channels.
"control_bits": [

[7,6,5,4,3,2,1,0]
],
"trigger_bits": [31]

},
"uhfqa-9ch": {

"control_bits": [[17],[18],[19],[20],[21],[22],[23],[24],[25]], //
→˓group[0:8]

"trigger_bits": [16],
"result_bits": [[1],[2],[3],[4],[5],[6],[7],[8],[9]], //

→˓group[0:8]
"data_valid_bits": [0]

},
"vsm-32ch":{

"control_bits": [
[0],[1],[2],[3],[4],[5],[6],[7], // group[0:7]
[8],[9],[10],[11],[12],[13],[14],[15], // group[8:15]
[16],[17],[18],[19],[20],[21],[22],[23], // group[16:23]
[24],[25],[26],[27],[28],[28],[30],[31] // group[24:31]

],
"trigger_bits": [] // no trigger

}
}

In this:

• <key> is a name which can be referred to from key instruments/[]/ref_control_mode.

• "control_bits" defines G groups of B bits, where:

– G determines which instrument_definitions/<key>/control_group_sizes is used; and

– B is an ordered list of bits (MSB to LSB) used for the code word.

• "trigger_bits" must be a vector of bits, used to trigger the instrument. Must either be size 1 (common
trigger) or size G (separate trigger per group), or 2 (common trigger duplicated on 2 bits, to support dual-QWG).

• "result_bits" is reserved for future use.

• "data_valid_bits" is reserved for future use.

80 Chapter 1. How to read the documentation

OpenQL

Signals

The "signals" section provides a signal library that gate definitions can refer to. The expected structure is as
follows:

"signals": {
"single-qubit-mw": [

{ "type": "mw",
"operand_idx": 0,
"value": [

"{gateName}-{instrumentName}:{instrumentGroup}-gi",
"{gateName}-{instrumentName}:{instrumentGroup}-gq",
"{gateName}-{instrumentName}:{instrumentGroup}-di",
"{gateName}-{instrumentName}:{instrumentGroup}-dq"

]
},
{ "type": "switch",

"operand_idx": 0,
"value": ["dummy"] // NB: no actual

→˓signal is generated
}

],
"two-qubit-flux": [

{ "type": "flux",
"operand_idx": 0, // control
"value": ["flux-0-{qubit}"]

},
{ "type": "flux",

"operand_idx": 1, // target
"value": ["flux-1-{qubit}"]

}
]

}

In this, the toplevel object key is a name which can be referred to from key instructions/<>/cc/ref_signal.
It defines an array of records with the fields below:

• "type" defines a signal type. This is used to select an instrument that provides that signal type through key
instruments/*/signal_type. The types are entirely user defined, there is no builtin notion of their
meaning.

• "operand_idx" states the operand index of the instruction/gate this signal refers to. Signals must be defined
for all operand_idx the gate refers to, so a 3-qubit gate needs to define 0 through 2. Several signals with the
same operand_idx can be defined to select several signal types, as shown in “single-qubit-mw” which has both
“mw” (provided by an AWG) and “switch” (provided by a VSM).

• "value" defines a vector of signal names. Supports the following macro expansions:

– {gateName}

– {instrumentName}

– {instrumentGroup}

– {qubit}

1.10. Supported architectures 81

OpenQL

Instruments

The "instruments" section defines instruments used in this setup, their configuration and connectivity. The
expected structure is as follows:

"instruments": [
// readout.
{

"name": "ro_0",
"qubits": [[6], [11], [], [], [], [], [], [], []],
"signal_type": "measure",
"ref_instrument_definition": "zi-uhfqa",
"ref_control_mode": "uhfqa-9ch",
"controller": {

"name": "cc",
"slot": 0,
"io_module": "CC-CONN-DIO"

}
},
// ...

// microwave.
{

"name": "mw_0",
"qubits": [// data qubits:

[2, 8, 14], // [freq L]
[1, 4, 6, 10, 12, 15] // [freq H]

],
"signal_type": "mw",
"ref_instrument_definition": "zi-hdawg",
"ref_control_mode": "awg8-mw-vsm-hack",
"controller": {

"name": "cc",
"slot": 3,
"io_module": "CC-CONN-DIO-DIFF"

}
},
// ...

// VSM
{

"name": "vsm_0",
"qubits": [

[2], [8], [14], [], [], [], [], [], // [freq L]
[1], [4], [6], [10], [12], [15], [], [], // [freq H]
[0], [5], [9], [13], [], [], [], [], // [freq Mg]
[3], [7], [11], [16], [], [], [], [] // [freq My]

],
"signal_type": "switch",
"ref_instrument_definition": "qutech-vsm",
"ref_control_mode": "vsm-32ch",
"controller": {

"name": "cc",
"slot": 5,
"io_module": "cc-conn-vsm"

}
},

(continues on next page)

82 Chapter 1. How to read the documentation

OpenQL

(continued from previous page)

// flux
{

"name": "flux_0",
"qubits": [[0], [1], [2], [3], [4], [5], [6], [7]],
"signal_type": "flux",
"ref_instrument_definition": "zi-hdawg",
"ref_control_mode": "awg8-flux",
"controller": {

"name": "cc",
"slot": 6,
"io_module": "CC-CONN-DIO-DIFF"

}
},
// ...

]

In this:

• "name" is a friendly name for the instrument.

• "ref_instrument_definition" selects a record under "instrument_definitions", which
must exist or an error is raised.

• "ref_control_mode" selects a record under "control_modes", which must exist or an error is raised.

• "signal_type" defines which signal type this instrument instance provides.

• "qubits" G groups of 1 or more qubits. G must match one of the available group sizes of
instrument_definitions/<ref_instrument_definition>/control_group_sizes. If
more than 1 qubits are stated per group - e.g. for an AWG used in conjunction with a VSM - they may not
produce conflicting signals at any time slot, or an error is raised.

• "force_cond_gates_on" is optional, reserved for future use.

• "controller/slot" is the slot number of the CC this instrument is connected to.

• "controller/name" is reserved for future use.

• "controller/io_module" is reserved for future use.

Additional instruction data

The CC backend extends the instruction definitions with a "cc" subsection, as shown in the example below:

"ry180": {
"duration": 20,
"matrix": [[0.0,1.0], [1.0,0.0], [1.0,0.0], [0.0,0.0]],
"cc": {

"ref_signal": "single-qubit-mw",
"static_codeword_override": [2]

}
},
"cz_park": {

"duration": 40,
"matrix": [[0.0,1.0], [1.0,0.0], [1.0,0.0], [0.0,0.0]],
"cc": {

"signal": [

(continues on next page)

1.10. Supported architectures 83

OpenQL

(continued from previous page)

{ "type": "flux",
"operand_idx": 0, // control
"value": ["flux-0-{qubit}"]

},
{ "type": "flux",

"operand_idx": 1, // target
"value": ["flux-1-{qubit}"]

},
{ "type": "flux",

"operand_idx": 2, // park
"value": ["park_cz-{qubit}"]

}
],
"static_codeword_override": [1,2,3]

}
}
"_wait_uhfqa": {

"duration": 220,
"matrix": [[0.0,1.0], [1.0,0.0], [1.0,0.0], [0.0,0.0]],
"cc": {

"signal": []
}

},
"_dist_dsm": {

"duration": 20,
"matrix": [[0.0,1.0], [1.0,0.0], [1.0,0.0], [0.0,0.0]],
"cc": {

"readout_mode": "feedback",
"signal": [

{ "type": "measure",
"operand_idx": 0,
"value": []

}
]

}
},
"_wait_dsm": {

"duration": 80,
"matrix": [[0.0,1.0], [1.0,0.0], [1.0,0.0], [0.0,0.0]],
"cc": {

"signal": []
}

},
"if_1_break": {

"duration": 60,
"matrix": [[0.0,1.0], [1.0,0.0], [1.0,0.0], [0.0,0.0]],
"cc": {

"signal": [],
"pragma": {

"break": 1
}

}
}

In this:

• "ref_signal" points to a signal definition in hardware_settings/eqasm_backend_cc/
signals, which must exist or

84 Chapter 1. How to read the documentation

OpenQL

an error is raised.

• "signal" defines a signal in place, in an identical fashion as hardware_settings/
eqasm_backend_cc/signals. May be empty ([]) to disable signal generation.

• "static_codeword_override" provides a user defined array of codeword (one entry per operand) for
this instruction. Currently, this key is compulsory (if signal is non-empty), but in the future, codewords will be
assigned automatically to make better use of the limited codeword space.

• "readout_mode" defines an instruction to perform readout if non-empty. If the value “feedback” is used,
code is generated to read and distribute the instrument result.

• "pragma/break" enables special functionality which makes the gate break out of a for loop if the associated
qubit was measured as 1 ("pragma" { "break": 1 }) or 0 ("pragma" { "break": 0 }).

Program flow feedback

To support Repeat Until Success type experiments, two special fields were added to the gate definition for the CC, as
shown in the previous section:

• the "readout_mode": "feedback" clause in the "_dist_dsm" gate causes the backend to generate
code to retrieve the measurement result from the DIO interface and distribute it across the CC;

• the "pragma": { "break": 1 } clause in the "if_1_break" gate causes the backend to generate
code to break out of a OpenQL loop if the associated qubit is read as 1 (or similarly if 0).

For convenience, the gate decomposition section can be extended with "measure_fb %0": ["measure
%0", "_wait_uhfqa %0", "_dist_dsm %0", "_wait_dsm %0"]

This creates a measure_fb instruction consisting of four parts:

• triggering a measurement (on the UHFQA);

• waiting for the internal processing time of the UHFQA;

• retrieve the measurement result, and distribute it across the CC; and

• wait fot the data distribution to finish.

The following example code contains a real RUS experiment using PycQED:

from pycqed.measurement.openql_experiments import openql_helpers as oqh
for i, angle in enumerate(angles):

oqh.ql.set_option('output_dir', 'd:\\githubrepos\\pycqed_py3\\pycqed\\measurement\
→˓\openql_experiments\\output')

p = oqh.create_program('feedback_{}'.format(angle), config_fn)
k = oqh.create_kernel("initialize_block_{}".format(angle), p)

Initialize
k.prepz(qidx)

Block do once (prepare |1>)
k.gate("rx180", [qidx])
p.add_kernel(k)

Begin conditional block
q = oqh.create_kernel("conditional_block_{}".format(angle), p)
Repeat until success 0
q.gate("measure_fb", [qidx])
q.gate("if_0_break", [qidx])

(continues on next page)

1.10. Supported architectures 85

OpenQL

(continued from previous page)

Correction for result 1
q.gate("rx180", [qidx])
p.add_for(q, 1000000)

Block finalize
r = oqh.create_kernel("finalize_block_{}".format(angle), p)
cw_idx = angle // 20 + 9
r.gate('cw_{:02}'.format(cw_idx), [qidx])

Final measurement
r.gate("measure_fb", [qidx])
p.add_kernel(r)

oqh.compile(p, extra_openql_options=[('backend_cc_run_once', 'yes')])

Caveats:

• It is not possible to mix measure_fb and measure in a single program. This is a consequence of the way
measurements are read from the input DIO interface of the CC: every measurement (both from measure_fb
and measure) is pushed onto an input FIFO. This FIFO is only popped by a measure_fb instruction. If the
two types are mixed, misalignment occurs between what is written and read. No check is currently performed
by the backend.

• break statements may only occur inside a for loop. No check is currently performed by the backend.

• break statements implicitly refer to the last measure_fb earlier in code as a result of implicit allocation of
variables.

These limitations will vanish when integration with cQASM 2.0 is completed.

Code generation pass

Most of the magic for all of the above happens in the code generation pass, arch.cc.VQ1Asm. This generates the
following file types:

• .vq1asm: ‘Vectored Q1 assembly’ file for the Central Controller.

• .vcd: timing file, can be viewed using GTKWave (http://gtkwave.sourceforge.net).

For configuration options, please refer to the documentation of this pass.

Default pass list

For the current/default global option values and the default variant (default), the following backend passes are used
by default.

- scheduler: sch.Schedule
|- resource_constraints: no

- codegen: arch.cc.gen.VQ1Asm
|- output_prefix: test_output/%N

86 Chapter 1. How to read the documentation

http://gtkwave.sourceforge.net

OpenQL

Default configuration file

When no platform configuration file is specified, the following default file is used instead.

{
"eqasm_compiler" : "cc",
"hardware_settings": {

"qubit_number": 5,
"cycle_time" : 20,
"eqasm_backend_cc": {

"instrument_definitions": {
"qutech-qwg": {

"channels": 4,
"control_group_sizes": [1, 4],
"latency": 50

},
"zi-hdawg": {

"channels": 8,
"control_group_sizes": [1, 2, 4, 8],
"latency": 300

},
"qutech-vsm": {

"channels": 32,
"control_group_sizes": [1],
"latency": 10

},
"zi-uhfqa": {

"channels": 9,
"control_group_sizes": [1],
"latency": 150

}
},
"control_modes": {

"awg8-mw-vsm-hack": {
"control_bits": [

[7,6,5,4,3,2,1,0],
[16,15,14,13,12,11,10,9]

],
"trigger_bits": [31]

},
"awg8-mw-vsm": {

"control_bits": [
[7,6,5,4,3,2,1,0],
[23,22,21,20,19,18,17,16]

],
"trigger_bits": [31]

},
"awg8-mw-direct-iq": {

"control_bits": [
[6,5,4,3,2,1,0],
[13,12,11,10,9,8,7],
[22,21,20,19,18,17,16],
[29,28,27,26,25,24,23]

],
"trigger_bits": [15,31]

},
"awg8-flux": {

"control_bits": [

(continues on next page)

1.10. Supported architectures 87

OpenQL

(continued from previous page)

[2,1,0],
[5,4,3],
[8,7,6],
[11,10,9],
[18,17,16],
[21,20,19],
[24,23,22],
[27,26,25]

],
"trigger_bits": [31]

},
"awg8-flux-vector-8": {

"control_bits": [
[7,6,5,4,3,2,1,0]

],
"trigger_bits": [31]

},
"dualqwg-mw-direct-iq": {

"control_bits": [
[6,5,4,3,2,1,0],
[13,12,11,10,9,8,7],
[22,21,20,19,18,17,16],
[29,28,27,26,25,24,23]

],
"trigger_bits": [15,31]

},
"uhfqa-9ch": {

"control_bits": [[17],[18],[19],[20],[21],[22],[23],[24],[25]],
"trigger_bits": [16],
"result_bits": [[1],[2],[3],[4],[5],[6],[7],[8],[9]],
"data_valid_bits": [0]

},
"vsm-32ch":{

"control_bits": [
[0],[1],[2],[3],[4],[5],[6],[7],
[8],[9],[10],[11],[12],[13],[14],[15],
[16],[17],[18],[19],[20],[21],[22],[23],
[24],[25],[26],[27],[28],[28],[30],[31]

],
"trigger_bits": []

}
},
"signals": {

"single-qubit-mw": [
{

"type": "mw",
"operand_idx": 0,
"value": [

"{gateName}-{instrumentName}:{instrumentGroup}-i",
"{gateName}-{instrumentName}:{instrumentGroup}-q"

]
}

],
"two-qubit-flux": [

{
"type": "flux",
"operand_idx": 0,

(continues on next page)

88 Chapter 1. How to read the documentation

OpenQL

(continued from previous page)

"value": ["flux-0-{qubit}"]
},
{

"type": "flux",
"operand_idx": 1,
"value": ["flux-1-{qubit}"]

}
],
"single-qubit-flux": [

{
"type": "flux",
"operand_idx": 0,
"value": ["flux-0-{qubit}"]

}
]

},
"instruments": [

{
"name": "ro_1",
"qubits": [[0], [2], [3], [4], [], [], [], [], []],
"signal_type": "measure",
"ref_instrument_definition": "zi-uhfqa",
"ref_control_mode": "uhfqa-9ch",
"controller": {

"name": "cc",
"slot": 0,
"io_module": "CC-CONN-DIO"

}
},
{

"name": "ro_2",
"qubits": [[1], [], [], [], [], [], [], [], []],
"signal_type": "measure",
"ref_instrument_definition": "zi-uhfqa",
"ref_control_mode": "uhfqa-9ch",
"controller": {

"name": "cc",
"slot": 1,
"io_module": "CC-CONN-DIO"

}
},
{

"name": "mw_0",
"qubits": [

[0],
[1],
[2],
[3]

],
"signal_type": "mw",
"ref_instrument_definition": "zi-hdawg",
"ref_control_mode": "awg8-mw-direct-iq",
"controller": {

"name": "cc",
"slot": 2,
"io_module": "CC-CONN-DIO-DIFF"

}
(continues on next page)

1.10. Supported architectures 89

OpenQL

(continued from previous page)

},
{

"name": "mw_1",
"qubits": [

[4],
[],
[],
[]

],
"signal_type": "mw",
"ref_instrument_definition": "zi-hdawg",
"ref_control_mode": "awg8-mw-direct-iq",
"controller": {

"name": "cc",
"slot": 3,
"io_module": "CC-CONN-DIO-DIFF"

}
},
{

"name": "flux_0",
"qubits": [[0], [1], [2], [3], [4], [], [], []],
"signal_type": "flux",
"ref_instrument_definition": "zi-hdawg",
"ref_control_mode": "awg8-flux",
"controller": {

"name": "cc",
"slot": 4,
"io_module": "CC-CONN-DIO-DIFF"

}
}

]
}

},
"gate_decomposition": {

"measz %0": ["measure %0"],
"x %0": ["rx180 %0"],
"y %0": ["ry180 %0"],
"h %0": ["ry90 %0", "ry180 %0"],
"z %0": ["rx180 %0","ry180 %0"],
"t %0": ["ry90 %0","rx45 %0","rym90 %0"],
"tdag %0": ["ry90 %0","rxm45 %0","rym90 %0"],
"s %0": ["ry90 %0","rx90 %0","rym90 %0"],
"sdag %0": ["ry90 %0","rxm90 %0","rym90 %0"],
"cnot %0 %1": ["rym90 %1", "cz %0 %1", "ry90 %1"],
"cz q0 q2": ["barrier q0,q2", "sf_cz_se q0", "sf_cz_nw q2", "barrier q0,q2"],
"cz q2 q0": ["barrier q0,q2", "sf_cz_se q0", "sf_cz_nw q2", "barrier q0,q2"],
"cz q1 q2": ["barrier q1,q2", "sf_cz_sw q1", "sf_cz_ne q2", "barrier q1,q2"],
"cz q2 q1": ["barrier q1,q2", "sf_cz_sw q1", "sf_cz_ne q2", "barrier q1,q2"],
"cz q3 q2": ["barrier q2,q3,q4", "sf_cz_sw q2", "sf_cz_ne q3", "sf_park q4",

→˓"barrier q2,q3,q4"],
"cz q2 q3": ["barrier q2,q3,q4", "sf_cz_sw q2", "sf_cz_ne q3", "sf_park q4",

→˓"barrier q2,q3,q4"],
"cz q4 q2": ["barrier q2,q3,q4", "sf_cz_se q2", "sf_cz_nw q4", "sf_park q3",

→˓"barrier q2,q3,q4"],
"cz q2 q4": ["barrier q2,q3,q4", "sf_cz_se q2", "sf_cz_nw q4", "sf_park q3",

→˓"barrier q2,q3,q4"],
"x180 %0": ["rx180 %0"],

(continues on next page)

90 Chapter 1. How to read the documentation

OpenQL

(continued from previous page)

"y180 %0": ["ry180 %0"],
"y90 %0": ["ry90 %0"],
"x90 %0": ["rx90 %0"],
"ym90 %0": ["rym90 %0"],
"xm90 %0": ["rxm90 %0"],
"cl_0 %0": ["i %0"],
"cl_1 %0": ["ry90 %0", "rx90 %0"],
"cl_2 %0": ["rxm90 %0", "rym90 %0"],
"cl_3 %0": ["rx180 %0"],
"cl_4 %0": ["rym90 %0", "rxm90 %0"],
"cl_5 %0": ["rx90 %0", "rym90 %0"],
"cl_6 %0": ["ry180 %0"],
"cl_7 %0": ["rym90 %0", "rx90 %0"],
"cl_8 %0": ["rx90 %0", "ry90 %0"],
"cl_9 %0": ["rx180 %0", "ry180 %0"],
"cl_10 %0": ["ry90 %0", "rxm90 %0"],
"cl_11 %0": ["rxm90 %0", "ry90 %0"],
"cl_12 %0": ["ry90 %0", "rx180 %0"],
"cl_13 %0": ["rxm90 %0"],
"cl_14 %0": ["rx90 %0", "rym90 %0", "rxm90 %0"],
"cl_15 %0": ["rym90 %0"],
"cl_16 %0": ["rx90 %0"],
"cl_17 %0": ["rx90 %0", "ry90 %0", "rx90 %0"],
"cl_18 %0": ["rym90 %0", "rx180 %0"],
"cl_19 %0": ["rx90 %0", "ry180 %0"],
"cl_20 %0": ["rx90 %0", "rym90 %0", "rx90 %0"],
"cl_21 %0": ["ry90 %0"],
"cl_22 %0": ["rxm90 %0", "ry180 %0"],
"cl_23 %0": ["rx90 %0", "ry90 %0", "rxm90 %0"],
"measure_fb %0": ["measure %0", "_wait_uhfqa %0", "_dist_dsm %0", "_wait_dsm

→˓%0"]
},
"instructions": {

"i": {
"duration": 20,
"cc": {

"signal": [],
"static_codeword_override": [0]

}
},
"rx180": {

"duration": 20,
"cc": {

"ref_signal": "single-qubit-mw",
"static_codeword_override": [1]

}
},
"ry180": {

"duration": 20,
"cc": {

"ref_signal": "single-qubit-mw",
"static_codeword_override": [2]

}
},
"rx90": {

"duration": 20,
"cc": {

(continues on next page)

1.10. Supported architectures 91

OpenQL

(continued from previous page)

"ref_signal": "single-qubit-mw",
"static_codeword_override": [3]

}
},
"ry90": {

"duration": 20,
"cc": {

"ref_signal": "single-qubit-mw",
"static_codeword_override": [4]

}
},
"rxm90": {

"duration": 20,
"cc": {

"ref_signal": "single-qubit-mw",
"static_codeword_override": [5]

}
},
"rym90": {

"duration": 20,
"cc": {

"ref_signal": "single-qubit-mw",
"static_codeword_override": [6]

}
},
"ry45": {

"duration": 20,
"cc": {

"ref_signal": "single-qubit-mw",
"static_codeword_override": [1]

}
},
"rym45": {

"duration": 20,
"cc": {

"ref_signal": "single-qubit-mw",
"static_codeword_override": [2]

}
},
"rx45": {

"duration": 20,
"cc": {

"ref_signal": "single-qubit-mw",
"static_codeword_override": [3]

}
},
"rxm45": {

"duration": 20,
"cc": {

"ref_signal": "single-qubit-mw",
"static_codeword_override": [4]

}
},
"cz": {

"duration": 80,
"cc": {

"ref_signal": "two-qubit-flux",
(continues on next page)

92 Chapter 1. How to read the documentation

OpenQL

(continued from previous page)

"static_codeword_override": [1,1]
}

},
"cz_park": {

"duration": 80,
"cc": {

"signal": [
{ "type": "flux",

"operand_idx": 0,
"value": ["flux-0-{qubit}"]

},
{ "type": "flux",

"operand_idx": 1,
"value": ["flux-1-{qubit}"]

},
{ "type": "flux",

"operand_idx": 2,
"value": ["park_cz-{qubit}"]

}
],
"static_codeword_override": [0,0,0]

}
},
"park_cz" : {

"duration" : 80,
"cc": {

"signal": [
{ "type": "flux",

"operand_idx": 0,
"value": ["park_cz-{qubit}"]

}
],
"static_codeword_override": [0]

}
},
"park_measure" : {

"duration" : 2000,
"cc": {

"signal": [
{ "type": "flux",

"operand_idx": 0,
"value": ["park_measure-{qubit}"]

}
],
"static_codeword_override": [0]

}
},
"prepz": {

"duration": 200000,
"cc": {

"signal": [],
"static_codeword_override": [0]

}
},
"measure": {

"duration": 2000,
"cc": {

(continues on next page)

1.10. Supported architectures 93

OpenQL

(continued from previous page)

"readout_mode": "",
"signal": [

{ "type": "measure",
"operand_idx": 0,
"value": ["dummy"],
"weight": ["dummy"]

}
],
"static_codeword_override": [0]

}
},
"_wait_uhfqa": {

"duration": 220,
"cc": {

"signal": []
}

},
"_dist_dsm": {

"duration": 20,
"cc": {

"readout_mode": "feedback",
"signal": [

{ "type": "measure",
"operand_idx": 0,
"value": []

}
]

}
},
"_wait_dsm": {

"duration": 80,
"cc": {

"signal": []
}

},
"if_0_break": {

"duration": 60,
"cc": {

"signal": [],
"pragma": {

"break": 0
}

}
},
"if_1_break": {

"duration": 60,
"cc": {

"signal": [],
"pragma": {

"break": 1
}

}
},
"square": {

"duration": 20,
"cc": {

"ref_signal": "single-qubit-mw",
(continues on next page)

94 Chapter 1. How to read the documentation

OpenQL

(continued from previous page)

"static_codeword_override": [0]
}

},
"spec": {

"duration": 20,
"cc": {

"ref_signal": "single-qubit-mw",
"static_codeword_override": [0]

}
},
"rx12": {

"duration": 20,
"cc": {

"ref_signal": "single-qubit-mw",
"static_codeword_override": [0]

}
},
"cw_00": {

"duration": 20,
"cc": {

"ref_signal": "single-qubit-mw",
"static_codeword_override": [0]

}
},
"cw_01": {

"duration": 20,
"cc": {

"ref_signal": "single-qubit-mw",
"static_codeword_override": [1]

}
},
"cw_02": {

"duration": 20,
"cc": {

"ref_signal": "single-qubit-mw",
"static_codeword_override": [2]

}
},
"cw_03": {

"duration": 20,
"cc": {

"ref_signal": "single-qubit-mw",
"static_codeword_override": [3]

}
},
"cw_04": {

"duration": 20,
"cc": {

"ref_signal": "single-qubit-mw",
"static_codeword_override": [4]

}
},
"cw_05": {

"duration": 20,
"cc": {

"ref_signal": "single-qubit-mw",
"static_codeword_override": [5]

(continues on next page)

1.10. Supported architectures 95

OpenQL

(continued from previous page)

}
},
"cw_06": {

"duration": 20,
"cc": {

"ref_signal": "single-qubit-mw",
"static_codeword_override": [6]

}
},
"cw_07": {

"duration": 20,
"cc": {

"ref_signal": "single-qubit-mw",
"static_codeword_override": [7]

}
},
"cw_08": {

"duration": 20,
"cc": {

"ref_signal": "single-qubit-mw",
"static_codeword_override": [8]

}
},
"cw_09": {

"duration": 20,
"cc": {

"ref_signal": "single-qubit-mw",
"static_codeword_override": [9]

}
},
"cw_10": {

"duration": 20,
"cc": {

"ref_signal": "single-qubit-mw",
"static_codeword_override": [0]

}
},
"cw_11": {

"duration": 20,
"cc": {

"ref_signal": "single-qubit-mw",
"static_codeword_override": [1]

}
},
"cw_12": {

"duration": 20,
"cc": {

"ref_signal": "single-qubit-mw",
"static_codeword_override": [2]

}
},
"cw_13": {

"duration": 20,
"cc": {

"ref_signal": "single-qubit-mw",
"static_codeword_override": [3]

}
(continues on next page)

96 Chapter 1. How to read the documentation

OpenQL

(continued from previous page)

},
"cw_14": {

"duration": 20,
"cc": {

"ref_signal": "single-qubit-mw",
"static_codeword_override": [4]

}
},
"cw_15": {

"duration": 20,
"cc": {

"ref_signal": "single-qubit-mw",
"static_codeword_override": [5]

}
},
"cw_16": {

"duration": 20,
"cc": {

"ref_signal": "single-qubit-mw",
"static_codeword_override": [6]

}
},
"cw_17": {

"duration": 20,
"cc": {

"ref_signal": "single-qubit-mw",
"static_codeword_override": [7]

}
},
"cw_18": {

"duration": 20,
"cc": {

"ref_signal": "single-qubit-mw",
"static_codeword_override": [8]

}
},
"cw_19": {

"duration": 20,
"cc": {

"ref_signal": "single-qubit-mw",
"static_codeword_override": [9]

}
},
"cw_20": {

"duration": 20,
"cc": {

"ref_signal": "single-qubit-mw",
"static_codeword_override": [0]

}
},
"cw_21": {

"duration": 20,
"cc": {

"ref_signal": "single-qubit-mw",
"static_codeword_override": [1]

}
},

(continues on next page)

1.10. Supported architectures 97

OpenQL

(continued from previous page)

"cw_22": {
"duration": 20,
"cc": {

"ref_signal": "single-qubit-mw",
"static_codeword_override": [2]

}
},
"cw_23": {

"duration": 20,
"cc": {

"ref_signal": "single-qubit-mw",
"static_codeword_override": [3]

}
},
"cw_24": {

"duration": 20,
"cc": {

"ref_signal": "single-qubit-mw",
"static_codeword_override": [4]

}
},
"cw_25": {

"duration": 20,
"cc": {

"ref_signal": "single-qubit-mw",
"static_codeword_override": [5]

}
},
"cw_26": {

"duration": 20,
"cc": {

"ref_signal": "single-qubit-mw",
"static_codeword_override": [6]

}
},
"cw_27": {

"duration": 20,
"cc": {

"ref_signal": "single-qubit-mw",
"static_codeword_override": [7]

}
},
"cw_28": {

"duration": 20,
"cc": {

"ref_signal": "single-qubit-mw",
"static_codeword_override": [8]

}
},
"cw_29": {

"duration": 20,
"cc": {

"ref_signal": "single-qubit-mw",
"static_codeword_override": [9]

}
},
"cw_30": {

(continues on next page)

98 Chapter 1. How to read the documentation

OpenQL

(continued from previous page)

"duration": 20,
"cc": {

"ref_signal": "single-qubit-mw",
"static_codeword_override": [0]

}
},
"cw_31": {

"duration": 20,
"cc": {

"ref_signal": "single-qubit-mw",
"static_codeword_override": [1]

}
},
"fl_cw_00": {

"duration": 80,
"cc": {

"ref_signal": "two-qubit-flux",
"static_codeword_override": [0]

}
},
"fl_cw_01": {

"duration": 80,
"cc": {

"ref_signal": "two-qubit-flux",
"static_codeword_override": [1]

}
},
"fl_cw_02": {

"duration": 80,
"cc": {

"ref_signal": "two-qubit-flux",
"static_codeword_override": [2]

}
},
"fl_cw_03": {

"duration": 80,
"cc": {

"ref_signal": "two-qubit-flux",
"static_codeword_override": [3]

}
},
"fl_cw_04": {

"duration": 80,
"cc": {

"ref_signal": "two-qubit-flux",
"static_codeword_override": [4]

}
},
"fl_cw_05": {

"duration": 80,
"cc": {

"ref_signal": "two-qubit-flux",
"static_codeword_override": [5]

}
},
"fl_cw_06": {

"duration": 80,
(continues on next page)

1.10. Supported architectures 99

OpenQL

(continued from previous page)

"cc": {
"ref_signal": "two-qubit-flux",
"static_codeword_override": [6]

}
},
"fl_cw_07": {

"duration": 80,
"cc": {

"ref_signal": "two-qubit-flux",
"static_codeword_override": [7]

}
},
"sf_cz_ne q2": {

"duration": 80,
"cc": {

"ref_signal": "single-qubit-flux",
"static_codeword_override": [1]

}
},
"sf_cz_ne q3": {

"duration": 80,
"cc": {

"ref_signal": "single-qubit-flux",
"static_codeword_override": [1]

}
},
"sf_cz_se q0": {

"duration": 80,
"cc": {

"ref_signal": "single-qubit-flux",
"static_codeword_override": [2]

}
},
"sf_cz_se q2": {

"duration": 80,
"cc": {

"ref_signal": "single-qubit-flux",
"static_codeword_override": [2]

}
},
"sf_cz_sw q1": {

"duration": 80,
"cc": {

"ref_signal": "single-qubit-flux",
"static_codeword_override": [3]

}
},
"sf_cz_sw q2": {

"duration": 80,
"cc": {

"ref_signal": "single-qubit-flux",
"static_codeword_override": [3]

}
},
"sf_cz_nw q2": {

"duration": 80,
"cc": {

(continues on next page)

100 Chapter 1. How to read the documentation

OpenQL

(continued from previous page)

"ref_signal": "single-qubit-flux",
"static_codeword_override": [4]

}
},
"sf_cz_nw q4": {

"duration": 80,
"cc": {

"ref_signal": "single-qubit-flux",
"static_codeword_override": [4]

}
},
"sf_park q3": {

"duration": 80,
"cc": {

"ref_signal": "single-qubit-flux",
"static_codeword_override": [5]

}
},
"sf_park q4": {

"duration": 80,
"cc": {

"ref_signal": "single-qubit-flux",
"static_codeword_override": [5]

}
},
"sf_sp_park": {

"duration": 80,
"cc": {

"ref_signal": "single-qubit-flux",
"static_codeword_override": [5]

}
},
"sf_square": {

"duration": 80,
"cc": {

"ref_signal": "single-qubit-flux",
"static_codeword_override": [6]

}
}

},
"topology": {

"edges": [
{ "id": 0, "src": 2, "dst": 0 },
{ "id": 1, "src": 2, "dst": 1 },
{ "id": 2, "src": 2, "dst": 3 },
{ "id": 3, "src": 2, "dst": 4 }

]
},
"resources": {

"qubits": {
"count": 5

},
"qwgs" : {

"count": 5,
"connection_map": {

"0": [0],
"1": [1],

(continues on next page)

1.10. Supported architectures 101

OpenQL

(continued from previous page)

"2": [2],
"3": [3],
"4": [4]

}
},
"meas_units" : {

"count": 2,
"connection_map": {

"0": [0, 2, 3, 4],
"1": [1]

}
},
"edges": {

"count": 4,
"connection_map": {

"0": [0, 2],
"1": [1, 2],
"2": [3, 2],
"3": [4, 2]

}
}

}
}

1.10.2 CC-light

• Pass/resource/C++ namespace: arch.cc_light

• Acceptable "eqasm_compiler" values: "cc_light" or "cc_light_compiler"

This architecture represents what remains of the CC-light backend from past versions of OpenQL. The CC-light is
being/has been phased out in our labs, thus code generation was no longer necessary, and has thus been removed
entirely. However, most test cases and most compiler-development-related activities still rely on parts of the CC-light
architecture, hence the architecture itself remains. It is also useful as an example for what a basic architecture should
look like within OpenQL’s codebase.

For extensive documentation on what the architecture was and how it worked, please refer to the documentation pages
of older versions of OpenQL. What still remains in OpenQL now is almost entirely based on configuring reusable
generalizations of CC-light specific code; therefore, its function can largely be derived from the default configuration
file and the documentation that documents the relevant sections of it.

Default pass list

For the current/default global option values and the default variant (default), the following backend passes are used
by default.

- rcscheduler: sch.Schedule
|- resource_constraints: yes

- lastqasmwriter: io.cqasm.Report
|- output_prefix: test_output/%N
|- output_suffix: _last.qasm

102 Chapter 1. How to read the documentation

OpenQL

default variant

This is the default CC-light configuration, based on what used to be tests/hardware_config_cc_light.
json, which in turn is a simplified version of the surface-7 configuration (the instruction durations are comparatively
short and uniform).

When no platform configuration file is specified, the following default file is used instead.

{
"eqasm_compiler": "cc_light",

"hardware_settings": {
"qubit_number": 7,
"cycle_time": 20

},

"topology": {
"form": "xy",
"qubits": [

{ "id": 0, "x": 1, "y": 2 },
{ "id": 1, "x": 3, "y": 2 },
{ "id": 2, "x": 0, "y": 1 },
{ "id": 3, "x": 2, "y": 1 },
{ "id": 4, "x": 4, "y": 1 },
{ "id": 5, "x": 1, "y": 0 },
{ "id": 6, "x": 3, "y": 0 }

],
"edges": [

{ "id": 0, "src": 2, "dst": 0 },
{ "id": 1, "src": 0, "dst": 3 },
{ "id": 2, "src": 3, "dst": 1 },
{ "id": 3, "src": 1, "dst": 4 },
{ "id": 4, "src": 2, "dst": 5 },
{ "id": 5, "src": 5, "dst": 3 },
{ "id": 6, "src": 3, "dst": 6 },
{ "id": 7, "src": 6, "dst": 4 },
{ "id": 8, "src": 0, "dst": 2 },
{ "id": 9, "src": 3, "dst": 0 },
{ "id": 10, "src": 1, "dst": 3 },
{ "id": 11, "src": 4, "dst": 1 },
{ "id": 12, "src": 5, "dst": 2 },
{ "id": 13, "src": 3, "dst": 5 },
{ "id": 14, "src": 6, "dst": 3 },
{ "id": 15, "src": 4, "dst": 6 }

]
},

"resources": {
"qubits": {},
"qwgs": {

"connection_map": {
"0": [0, 1],
"1": [2, 3, 4],
"2": [5, 6]

}
},
"meas_units": {

"connection_map": {

(continues on next page)

1.10. Supported architectures 103

OpenQL

(continued from previous page)

"0": [0, 2, 3, 5, 6],
"1": [1, 4]

}
},
"edges": {

"connection_map": {
"0": [2, 10],
"1": [3, 11],
"2": [0, 8],
"3": [1, 9],
"4": [6, 14],
"5": [7, 15],
"6": [4, 12],
"7": [5, 13],
"8": [2, 10],
"9": [3, 11],
"10": [0, 8],
"11": [1, 9],
"12": [6, 14],
"13": [7, 15],
"14": [4, 12],
"15": [5, 13]

}
},
"detuned_qubits": {

"connection_map": {
"0": [3],
"1": [2],
"2": [4],
"3": [3],
"4": [],
"5": [6],
"6": [5],
"7": [],
"8": [3],
"9": [2],
"10": [4],
"11": [3],
"12": [],
"13": [6],
"14": [5],
"15": []

}
}

},

"instructions": {
"prepx": {

"duration": 40,
"type": "mw",
"cc_light_instr": "prepx"

},
"prepz": {

"duration": 40,
"type": "none",
"cc_light_instr": "prepz"

},
(continues on next page)

104 Chapter 1. How to read the documentation

OpenQL

(continued from previous page)

"cprepz": {
"duration": 40,
"type": "mw",
"cc_light_instr": "cprepz"

},
"measz": {

"duration": 40,
"type": "readout",
"cc_light_instr": "measz"

},
"measure": {

"duration": 40,
"type": "readout",
"cc_light_instr": "measz"

},
"i": {

"duration": 40,
"type": "mw",
"cc_light_instr": "i"

},
"x": {

"duration": 40,
"type": "mw",
"cc_light_instr": "x"

},
"y": {

"duration": 40,
"type": "mw",
"cc_light_instr": "y"

},
"z": {

"duration": 40,
"type": "mw",
"cc_light_instr": "z"

},
"h": {

"duration": 40,
"type": "mw",
"cc_light_instr": "h"

},
"s": {

"duration": 40,
"type": "mw",
"cc_light_instr": "s"

},
"sdag": {

"duration": 40,
"type": "mw",
"cc_light_instr": "sdag"

},
"rx90": {

"duration": 40,
"type": "mw",
"cc_light_instr": "x90"

},
"xm90": {

"duration": 40,
(continues on next page)

1.10. Supported architectures 105

OpenQL

(continued from previous page)

"type": "mw",
"cc_light_instr": "xm90"

},
"ry90": {

"duration": 40,
"qubits": ["q0"],
"type": "mw",
"cc_light_instr": "y90"

},
"ym90": {

"duration": 40,
"type": "mw",
"cc_light_instr": "ym90"

},
"t": {

"duration": 40,
"type": "mw",
"cc_light_instr": "t"

},
"tdag": {

"duration": 40,
"type": "mw",
"cc_light_instr": "tdag"

},
"x45": {

"duration": 40,
"type": "mw",
"cc_light_instr": "x45"

},
"xm45": {

"duration": 40,
"type": "mw",
"cc_light_instr": "xm45"

},
"ry180": {

"duration": 40,
"type": "mw",
"cc_light_instr": "ry180"

},
"cnot": {

"duration": 80,
"type": "flux",
"cc_light_instr": "cnot"

},
"sqf": {

"duration": 80,
"type": "flux",
"cc_light_instr": "sqf"

},
"cz": {

"duration": 80,
"type": "flux",
"cc_light_instr": "cz"

}
},

"gate_decomposition": {
(continues on next page)

106 Chapter 1. How to read the documentation

OpenQL

(continued from previous page)

"rx180 %0" : ["x %0"],
"cnot %0,%1" : ["ym90 %1","cz %0,%1","ry90 %1"]

}
}

s5 variant

This variant models the surface-5 chip. It is primarily intended as a baseline configuration for testing mapping and
scheduling, as the eQASM backend is no longer part of OpenQL.

When no platform configuration file is specified, the following default file is used instead.

{
"eqasm_compiler": "cc_light",

"hardware_settings": {
"qubit_number": 5,
"cycle_time": 20

},

"topology": {
"form": "xy",
"qubits": [

{ "id": 0, "x": 1, "y": 2 },
{ "id": 1, "x": 3, "y": 2 },
{ "id": 2, "x": 2, "y": 1 },
{ "id": 3, "x": 1, "y": 0 },
{ "id": 4, "x": 3, "y": 0 }

],
"edges": [

{ "id": 0, "src": 0, "dst": 2 },
{ "id": 1, "src": 2, "dst": 1 },
{ "id": 2, "src": 3, "dst": 2 },
{ "id": 3, "src": 2, "dst": 4 },
{ "id": 4, "src": 2, "dst": 0 },
{ "id": 5, "src": 1, "dst": 2 },
{ "id": 6, "src": 2, "dst": 3 },
{ "id": 7, "src": 4, "dst": 2 }

]
},

"resources": {
"qubits": {},
"meas_units": {

"connection_map": {
"0": [0, 2, 3, 4],
"1": [1]

}
},
"detuned_qubits": {

"connection_map": {
"0": [],
"1": [],
"2": [4],
"3": [3],

(continues on next page)

1.10. Supported architectures 107

OpenQL

(continued from previous page)

"4": [],
"5": [],
"6": [4],
"7": [3]

}
}

},

"instructions": {
"prepx": {

"duration": 20,
"type": "mw",
"cc_light_instr": "prepx"

},
"prepz": {

"duration": 20,
"type": "mw",
"cc_light_instr": "prepz"

},
"measx_keep": {

"duration": 340,
"type": "readout",
"cc_light_instr": "measx"

},
"measz_keep": {

"duration": 300,
"type": "readout",
"cc_light_instr": "measz"

},
"measure": {

"duration": 300,
"type": "readout",
"cc_light_instr": "measz"

},
"i": {

"duration": 20,
"type": "mw",
"cc_light_instr": "i"

},
"x": {

"duration": 20,
"type": "mw",
"cc_light_instr": "x"

},
"y": {

"duration": 20,
"type": "mw",
"cc_light_instr": "y"

},
"z": {

"duration": 40,
"type": "mw",
"cc_light_instr": "z"

},
"rx": {

"duration": 20,
"type": "mw",

(continues on next page)

108 Chapter 1. How to read the documentation

OpenQL

(continued from previous page)

"cc_light_instr": "rx"
},
"ry": {

"duration": 20,
"type": "mw",
"cc_light_instr": "ry"

},
"rz": {

"duration": 20,
"type": "mw",
"cc_light_instr": "rz"

},
"h": {

"duration": 40,
"type": "mw",
"cc_light_instr": "h"

},
"s": {

"duration": 60,
"type": "mw",
"cc_light_instr": "s"

},
"sdag": {

"duration": 60,
"type": "mw",
"cc_light_instr": "sdag"

},
"x90": {

"duration": 20,
"type": "mw",
"cc_light_instr": "x90"

},
"xm90": {

"duration": 20,
"type": "mw",
"cc_light_instr": "xm90"

},
"y90": {

"duration": 20,
"type": "mw",
"cc_light_instr": "y90"

},
"ym90": {

"duration": 20,
"type": "mw",
"cc_light_instr": "ym90"

},
"t": {

"duration": 60,
"type": "mw",
"cc_light_instr": "t"

},
"tdag": {

"duration": 60,
"type": "mw",
"cc_light_instr": "tdag"

},
(continues on next page)

1.10. Supported architectures 109

OpenQL

(continued from previous page)

"x45": {
"duration": 20,
"type": "mw",
"cc_light_instr": "x45"

},
"xm45": {

"duration": 20,
"type": "mw",
"cc_light_instr": "xm45"

},
"y45": {

"duration": 20,
"type": "mw",
"cc_light_instr": "y45"

},
"ym45": {

"duration": 20,
"type": "mw",
"cc_light_instr": "ym45"

},
"cz": {

"duration": 60,
"type": "flux",
"cc_light_instr": "cz"

},
"cnot_keep": {

"duration": 100,
"type": "flux",
"cc_light_instr": "cnot"

},
"swap_keep": {

"duration": 260,
"type": "flux",
"cc_light_instr": "swap"

},
"move_keep": {

"duration": 180,
"type": "flux",
"cc_light_instr": "move"

}
},

"gate_decomposition": {
"cnot %0,%1": ["ym90 %1","cz %0,%1","y90 %1"],
"swap %0,%1": ["ym90 %1","cz %0,%1","y90 %1", "ym90 %0","cz %1,%0","y90 %0",

→˓"ym90 %1","cz %0,%1","y90 %1"],
"move %0,%1": ["ym90 %0","cz %1,%0","y90 %0", "ym90 %1","cz %0,%1","y90 %1"],

"toffoli %0,%1,%2" : ["y90 %0", "xm45 %0", "y %0", "y90 %1", "xm45 %1", "ym90
→˓%1", "x %2", "ym90 %2", "cz %2,%0", "y %0", "x45 %0", "y %0", "ym90 %2","cz %1,%2",
→˓"y %2","cz %1,%0","y %0", "x45 %2", "y %2", "xm45 %0", "y %0","cz %1,%2","y90 %2",
→˓"cz %2,%0","y %0", "x45 %0", "y %0", "y90 %2", "xm45 %2", "ym90 %2", "cz %1,%0",
→˓"y90 %0", "x %2", "ym90 %2"],

"rx180 %0" : ["x %0"],
"ry180 %0" : ["y %0"],
"rx90 %0" : ["x90 %0"],

(continues on next page)

110 Chapter 1. How to read the documentation

OpenQL

(continued from previous page)

"ry90 %0" : ["y90 %0"],
"mrx90 %0" : ["xm90 %0"],
"mry90 %0" : ["ym90 %0"],
"rx45 %0" : ["x45 %0"],
"ry45 %0" : ["y45 %0"],
"mrx45 %0" : ["xm45 %0"],
"mry45 %0" : ["ym45 %0"],
"measx %0" : ["h %0", "measure %0"],
"measz %0" : ["measure %0"],

"swap_real %0,%1": ["cnot %0,%1", "cnot %1,%0", "cnot %0,%1"],
"move_real %0,%1": ["cnot %1,%0", "cnot %0,%1"],
"z_real %0" : ["x %0","y %0"],
"h_real %0" : ["x %0", "ym90 %0"],
"t_real %0" : ["y90 %0", "x45 %0", "ym90 %0"],
"tdag_real %0" : ["y90 %0", "xm45 %0", "ym90 %0"],
"s_real %0" : ["y90 %0", "x90 %0", "ym90 %0"],
"sdag_real %0" : ["y90 %0", "xm90 %0", "ym90 %0"],

"cnot_prim %0,%1": ["ym90 %1","cz %0,%1","y90 %1"],
"swap_prim %0,%1": ["ym90 %1","cz %0,%1","y90 %1", "ym90 %0","cz %1,%0","y90

→˓%0", "ym90 %1","cz %0,%1","y90 %1"],
"move_prim %0,%1": ["ym90 %0","cz %1,%0","y90 %0", "ym90 %1","cz %0,%1","y90

→˓%1"],
"z_prim %0" : ["x %0","y %0"],
"h_prim %0" : ["x %0", "ym90 %0"],
"t_prim %0" : ["y90 %0", "x45 %0", "ym90 %0"],
"tdag_prim %0" : ["y90 %0", "xm45 %0", "ym90 %0"],
"s_prim %0" : ["y90 %0", "x90 %0", "ym90 %0"],
"sdag_prim %0" : ["y90 %0", "xm90 %0", "ym90 %0"]

}
}

s7 variant

This variant models the surface-7 chip. It is primarily intended as a baseline configuration for testing mapping and
scheduling, as the eQASM backend is no longer part of OpenQL.

When no platform configuration file is specified, the following default file is used instead.

{
"eqasm_compiler": "cc_light",

"hardware_settings": {
"qubit_number": 7,
"cycle_time": 20

},

"topology": {
"form": "xy",
"qubits": [

{ "id": 0, "x": 1, "y": 2 },
{ "id": 1, "x": 3, "y": 2 },
{ "id": 2, "x": 0, "y": 1 },
{ "id": 3, "x": 2, "y": 1 },

(continues on next page)

1.10. Supported architectures 111

OpenQL

(continued from previous page)

{ "id": 4, "x": 4, "y": 1 },
{ "id": 5, "x": 1, "y": 0 },
{ "id": 6, "x": 3, "y": 0 }

],
"edges": [

{ "id": 0, "src": 2, "dst": 0 },
{ "id": 1, "src": 0, "dst": 3 },
{ "id": 2, "src": 3, "dst": 1 },
{ "id": 3, "src": 1, "dst": 4 },
{ "id": 4, "src": 2, "dst": 5 },
{ "id": 5, "src": 5, "dst": 3 },
{ "id": 6, "src": 3, "dst": 6 },
{ "id": 7, "src": 6, "dst": 4 },
{ "id": 8, "src": 0, "dst": 2 },
{ "id": 9, "src": 3, "dst": 0 },
{ "id": 10, "src": 1, "dst": 3 },
{ "id": 11, "src": 4, "dst": 1 },
{ "id": 12, "src": 5, "dst": 2 },
{ "id": 13, "src": 3, "dst": 5 },
{ "id": 14, "src": 6, "dst": 3 },
{ "id": 15, "src": 4, "dst": 6 }

]
},

"resources": {
"qubits": {},
"qwgs": {

"connection_map": {
"0": [0, 1],
"1": [2, 3, 4],
"2": [5, 6]

}
},
"meas_units": {

"connection_map": {
"0": [0, 2, 3, 5, 6],
"1": [1, 4]

}
},
"edges": {

"connection_map": {
"0": [2, 10],
"1": [3, 11],
"2": [0, 8],
"3": [1, 9],
"4": [6, 14],
"5": [7, 15],
"6": [4, 12],
"7": [5, 13],
"8": [2, 10],
"9": [3, 11],
"10": [0, 8],
"11": [1, 9],
"12": [6, 14],
"13": [7, 15],
"14": [4, 12],
"15": [5, 13]

(continues on next page)

112 Chapter 1. How to read the documentation

OpenQL

(continued from previous page)

}
},
"detuned_qubits": {

"connection_map": {
"0": [3],
"1": [2],
"2": [4],
"3": [3],
"4": [],
"5": [6],
"6": [5],
"7": [],
"8": [3],
"9": [2],
"10": [4],
"11": [3],
"12": [],
"13": [6],
"14": [5],
"15": []

}
}

},

"instructions": {
"prepx": {

"duration": 640,
"type": "mw",
"cc_light_instr": "prepx"

},
"prepz": {

"duration": 620,
"type": "mw",
"cc_light_instr": "prepz"

},
"measx_keep": {

"duration": 340,
"type": "readout",
"cc_light_instr": "measx"

},
"measz_keep": {

"duration": 300,
"type": "readout",
"cc_light_instr": "measz"

},
"measure": {

"duration": 300,
"type": "readout",
"cc_light_instr": "measz"

},
"i": {

"duration": 20,
"type": "mw",
"cc_light_instr": "i"

},
"x": {

"duration": 20,
(continues on next page)

1.10. Supported architectures 113

OpenQL

(continued from previous page)

"type": "mw",
"cc_light_instr": "x"

},
"y": {

"duration": 20,
"type": "mw",
"cc_light_instr": "y"

},
"z": {

"duration": 40,
"type": "mw",
"cc_light_instr": "z"

},
"rx": {

"duration": 60,
"type": "mw",
"cc_light_instr": "rx"

},
"ry": {

"duration": 60,
"type": "mw",
"cc_light_instr": "ry"

},
"rz": {

"duration": 60,
"type": "mw",
"cc_light_instr": "rz"

},
"h": {

"duration": 40,
"type": "mw",
"cc_light_instr": "h"

},
"s": {

"duration": 60,
"type": "mw",
"cc_light_instr": "s"

},
"sdag": {

"duration": 60,
"type": "mw",
"cc_light_instr": "sdag"

},
"x90": {

"duration": 20,
"type": "mw",
"cc_light_instr": "x90"

},
"xm90": {

"duration": 20,
"type": "mw",
"cc_light_instr": "xm90"

},
"y90": {

"duration": 20,
"type": "mw",
"cc_light_instr": "y90"

(continues on next page)

114 Chapter 1. How to read the documentation

OpenQL

(continued from previous page)

},
"ym90": {

"duration": 20,
"type": "mw",
"cc_light_instr": "ym90"

},
"t": {

"duration": 60,
"type": "mw",
"cc_light_instr": "t"

},
"tdag": {

"duration": 60,
"type": "mw",
"cc_light_instr": "tdag"

},
"x45": {

"duration": 20,
"type": "mw",
"cc_light_instr": "x45"

},
"xm45": {

"duration": 20,
"type": "mw",
"cc_light_instr": "xm45"

},
"y45": {

"duration": 20,
"type": "mw",
"cc_light_instr": "y45"

},
"ym45": {

"duration": 20,
"type": "mw",
"cc_light_instr": "ym45"

},
"cz": {

"duration": 40,
"type": "flux",
"cc_light_instr": "cz"

},
"cnot": {

"duration": 80,
"type": "flux",
"cc_light_instr": "cnot"

},
"toffoli" : {

"duration": 80,
"type": "multi",
"cc_light_instr": "toffoli"

},
"swap": {

"duration": 200,
"type": "flux",
"cc_light_instr": "swap"

},
"move": {

(continues on next page)

1.10. Supported architectures 115

OpenQL

(continued from previous page)

"duration": 140,
"type": "flux",
"cc_light_instr": "move"

}
},

"gate_decomposition": {
"toffoli_decomp %0,%1,%2" : ["y90 %0", "xm45 %0", "y %0", "y90 %1", "xm45 %1",

→˓ "ym90 %1", "x %2", "ym90 %2", "cz %2,%0", "y %0", "x45 %0", "y %0", "ym90 %2","cz
→˓%1,%2","y %2","cz %1,%0","y %0", "x45 %2", "y %2", "xm45 %0", "y %0","cz %1,%2",
→˓"y90 %2","cz %2,%0","y %0", "x45 %0", "y %0", "y90 %2", "xm45 %2", "ym90 %2", "cz
→˓%1,%0","y90 %0", "x %2", "ym90 %2"],

"rx180 %0" : ["x %0"],
"ry180 %0" : ["y %0"],
"rx90 %0" : ["x90 %0"],
"ry90 %0" : ["y90 %0"],
"mrx90 %0" : ["xm90 %0"],
"mry90 %0" : ["ym90 %0"],
"rx45 %0" : ["x45 %0"],
"ry45 %0" : ["y45 %0"],
"mrx45 %0" : ["xm45 %0"],
"mry45 %0" : ["ym45 %0"],
"measx %0" : ["h %0", "measure %0"],
"measz %0" : ["measure %0"],

"swap_real %0,%1": ["cnot %0,%1", "cnot %1,%0", "cnot %0,%1"],
"move_real %0,%1": ["cnot %1,%0", "cnot %0,%1"],
"z_real %0" : ["x %0","y %0"],
"h_real %0" : ["x %0", "ym90 %0"],
"t_real %0" : ["y90 %0", "x45 %0", "ym90 %0"],
"tdag_real %0" : ["y90 %0", "xm45 %0", "ym90 %0"],
"s_real %0" : ["y90 %0", "x90 %0", "ym90 %0"],
"sdag_real %0" : ["y90 %0", "xm90 %0", "ym90 %0"],

"cnot_prim %0,%1": ["ym90 %1","cz %0,%1","y90 %1"],
"swap_prim %0,%1": ["ym90 %1","cz %0,%1","y90 %1", "ym90 %0","cz %1,%0","y90

→˓%0", "ym90 %1","cz %0,%1","y90 %1"],
"move_prim %0,%1": ["ym90 %0","cz %1,%0","y90 %0", "ym90 %1","cz %0,%1","y90

→˓%1"],
"z_prim %0" : ["x %0","y %0"],
"h_prim %0" : ["x %0", "ym90 %0"],
"t_prim %0" : ["y90 %0", "x45 %0", "ym90 %0"],
"tdag_prim %0" : ["y90 %0", "xm45 %0", "ym90 %0"],
"s_prim %0" : ["y90 %0", "x90 %0", "ym90 %0"],
"sdag_prim %0" : ["y90 %0", "xm90 %0", "ym90 %0"]

}
}

116 Chapter 1. How to read the documentation

OpenQL

s17 variant

This variant models the surface-17 chip. It is primarily intended as a baseline configuration for testing mapping and
scheduling, as the eQASM backend is no longer part of OpenQL.

When no platform configuration file is specified, the following default file is used instead.

{
"eqasm_compiler": "cc_light",

"hardware_settings": {
"qubit_number": 17,
"cycle_time": 20

},

"topology": {
"form": "xy",
"qubits": [

{ "id": 0, "x": 4, "y": 6 },
{ "id": 1, "x": 1, "y": 5 },
{ "id": 2, "x": 3, "y": 5 },
{ "id": 3, "x": 5, "y": 5 },
{ "id": 4, "x": 0, "y": 4 },
{ "id": 5, "x": 2, "y": 4 },
{ "id": 6, "x": 4, "y": 4 },
{ "id": 7, "x": 1, "y": 3 },
{ "id": 8, "x": 3, "y": 3 },
{ "id": 9, "x": 5, "y": 3 },
{ "id": 10, "x": 2, "y": 2 },
{ "id": 11, "x": 4, "y": 2 },
{ "id": 12, "x": 6, "y": 2 },
{ "id": 13, "x": 1, "y": 1 },
{ "id": 14, "x": 3, "y": 1 },
{ "id": 15, "x": 5, "y": 1 },
{ "id": 16, "x": 2, "y": 0 }

],
"edges": [

{ "id": 0, "src": 2, "dst": 0 },
{ "id": 1, "src": 0, "dst": 3 },
{ "id": 2, "src": 4, "dst": 1 },
{ "id": 3, "src": 1, "dst": 5 },
{ "id": 4, "src": 5, "dst": 2 },
{ "id": 5, "src": 2, "dst": 6 },
{ "id": 6, "src": 6, "dst": 3 },
{ "id": 7, "src": 4, "dst": 7 },
{ "id": 8, "src": 7, "dst": 5 },
{ "id": 9, "src": 5, "dst": 8 },
{ "id": 10, "src": 8, "dst": 6 },
{ "id": 11, "src": 6, "dst": 9 },
{ "id": 12, "src": 7, "dst": 10 },
{ "id": 13, "src": 10, "dst": 8 },
{ "id": 14, "src": 8, "dst": 11 },
{ "id": 15, "src": 11, "dst": 9 },
{ "id": 16, "src": 9, "dst": 12 },
{ "id": 17, "src": 13, "dst": 10 },
{ "id": 18, "src": 10, "dst": 14 },
{ "id": 19, "src": 14, "dst": 11 },
{ "id": 20, "src": 11, "dst": 15 },

(continues on next page)

1.10. Supported architectures 117

OpenQL

(continued from previous page)

{ "id": 21, "src": 15, "dst": 12 },
{ "id": 22, "src": 13, "dst": 16 },
{ "id": 23, "src": 16, "dst": 14 },

{ "id": 24, "src": 0, "dst": 2 },
{ "id": 25, "src": 3, "dst": 0 },
{ "id": 26, "src": 1, "dst": 4 },
{ "id": 27, "src": 5, "dst": 1 },
{ "id": 28, "src": 2, "dst": 5 },
{ "id": 29, "src": 6, "dst": 2 },
{ "id": 30, "src": 3, "dst": 6 },
{ "id": 31, "src": 7, "dst": 4 },
{ "id": 32, "src": 5, "dst": 7 },
{ "id": 33, "src": 8, "dst": 5 },
{ "id": 34, "src": 6, "dst": 8 },
{ "id": 35, "src": 9, "dst": 6 },
{ "id": 36, "src": 10, "dst": 7 },
{ "id": 37, "src": 8, "dst": 10 },
{ "id": 38, "src": 11, "dst": 8 },
{ "id": 39, "src": 9, "dst": 11 },
{ "id": 40, "src": 12, "dst": 9 },
{ "id": 41, "src": 10, "dst": 13 },
{ "id": 42, "src": 14, "dst": 10 },
{ "id": 43, "src": 11, "dst": 14 },
{ "id": 44, "src": 15, "dst": 11 },
{ "id": 45, "src": 12, "dst": 15 },
{ "id": 46, "src": 16, "dst": 13 },
{ "id": 47, "src": 14, "dst": 16 }

]
},

"resources": {
"qubits": {},
"qwgs": {

"connection_map": {
"0" : [1, 2, 3, 13, 14, 15],
"1" : [7, 8, 9],
"2" : [0, 5, 11, 16, 4, 6, 10, 12]

}
},
"meas_units": {

"connection_map": {
"0" : [13,16],
"1" : [1, 4, 5, 7, 8, 10, 11, 14, 15],
"2" : [0, 2, 3, 6, 9, 12]

}
},
"edges": {

"connection_map": {
"0": [3, 27, 6, 30],
"1": [5, 29, 4, 28],
"2": [4, 28],
"3": [0, 24, 5, 29],
"4": [2, 26, 1, 25, 6, 30],
"5": [3, 27, 1, 25],
"6": [4, 28, 0, 24],
"7": [9, 23, 13, 37],

(continues on next page)

118 Chapter 1. How to read the documentation

OpenQL

(continued from previous page)

"8": [10, 34, 13, 37, 14, 28],
"9": [7, 31, 12, 36, 11, 35, 15, 39],
"10": [8, 32, 12, 36, 15, 39],
"11": [9, 33, 13, 37, 14, 38],
"12": [9, 33, 10, 34, 14, 38],
"13": [8, 32, 11, 35, 15, 39],
"14": [8, 32, 12, 36, 11, 35, 16, 40],
"15": [9, 33, 13, 37, 10, 34],
"16": [10, 34, 14, 38],
"17": [19, 43],
"18": [22, 46, 20, 44],
"19": [17, 41, 22, 46, 21, 45],
"20": [18, 42, 23, 47],
"21": [19, 43],
"22": [18, 42, 19, 43],
"23": [17, 41, 20, 44],

"24": [3, 27, 6, 30],
"25": [5, 29, 4, 28],
"26": [4, 28],
"27": [0, 24, 5, 29],
"28": [2, 26, 1, 25, 6, 30],
"29": [3, 27, 1, 25],
"30": [4, 28, 0, 24],
"31": [9, 23, 13, 37],
"32": [10, 34, 13, 37, 14, 28],
"33": [7, 31, 12, 36, 11, 35, 15, 39],
"34": [8, 32, 12, 36, 15, 39],
"35": [9, 33, 13, 37, 14, 38],
"36": [9, 33, 10, 34, 14, 38],
"37": [8, 32, 11, 35, 15, 39],
"38": [8, 32, 12, 36, 11, 35, 16, 40],
"39": [9, 33, 13, 37, 10, 34],
"40": [10, 34, 14, 38],
"41": [19, 43],
"42": [22, 46, 20, 44],
"43": [17, 41, 22, 46, 21, 45],
"44": [18, 42, 23, 47],
"45": [19, 43],
"46": [18, 42, 19, 43],
"47": [17, 41, 20, 44]

}
},
"detuned_qubits": {

"connection_map": {
"0": [5, 6],
"1": [6],
"2": [5],
"3": [4],
"4": [0, 6],
"5": [5, 0],
"6": [0],
"7": [],
"8": [8],
"9": [7],
"10": [9],
"11": [8],

(continues on next page)

1.10. Supported architectures 119

OpenQL

(continued from previous page)

"12": [8],
"13": [7],
"14": [9],
"15": [8],
"16": [],
"17": [16],
"18": [16, 11],
"19": [10, 16],
"20": [12],
"21": [11],
"22": [10],
"23": [10, 11],

"24": [5, 6],
"25": [6],
"26": [5],
"27": [4],
"28": [0, 6],
"29": [5, 0],
"30": [0],
"31": [],
"32": [8],
"33": [7],
"34": [9],
"35": [8],
"36": [8],
"37": [7],
"38": [9],
"39": [8],
"40": [],
"41": [16],
"42": [16, 11],
"43": [10, 16],
"44": [12],
"45": [11],
"46": [10],
"47": [10, 11]

}
}

},

"instructions": {
"prepx": {

"duration": 640,
"type": "mw",
"cc_light_instr": "prepx"

},
"prepz": {

"duration": 620,
"type": "mw",
"cc_light_instr": "prepz"

},
"measx_keep": {

"duration": 340,
"type": "readout",
"cc_light_instr": "measx"

},
(continues on next page)

120 Chapter 1. How to read the documentation

OpenQL

(continued from previous page)

"measz_keep": {
"duration": 300,
"type": "readout",
"cc_light_instr": "measz"

},
"measure": {

"duration": 300,
"type": "readout",
"cc_light_instr": "measz"

},
"i": {

"duration": 20,
"type": "mw",
"cc_light_instr": "i"

},
"x": {

"duration": 20,
"type": "mw",
"cc_light_instr": "x"

},
"y": {

"duration": 20,
"type": "mw",
"cc_light_instr": "y"

},
"z": {

"duration": 40,
"type": "mw",
"cc_light_instr": "z"

},
"rx": {

"duration": 60,
"type": "mw",
"cc_light_instr": "rx"

},
"ry": {

"duration": 60,
"type": "mw",
"cc_light_instr": "ry"

},
"rz": {

"duration": 60,
"type": "mw",
"cc_light_instr": "rz"

},
"h": {

"duration": 40,
"type": "mw",
"cc_light_instr": "h"

},
"s": {

"duration": 60,
"type": "mw",
"cc_light_instr": "s"

},
"sdag": {

"duration": 60,
(continues on next page)

1.10. Supported architectures 121

OpenQL

(continued from previous page)

"type": "mw",
"cc_light_instr": "sdag"

},
"x90": {

"duration": 20,
"type": "mw",
"cc_light_instr": "x90"

},
"xm90": {

"duration": 20,
"type": "mw",
"cc_light_instr": "xm90"

},
"y90": {

"duration": 20,
"type": "mw",
"cc_light_instr": "y90"

},
"ym90": {

"duration": 20,
"type": "mw",
"cc_light_instr": "ym90"

},
"t": {

"duration": 60,
"type": "mw",
"cc_light_instr": "t"

},
"tdag": {

"duration": 60,
"type": "mw",
"cc_light_instr": "tdag"

},
"x45": {

"duration": 20,
"type": "mw",
"cc_light_instr": "x45"

},
"xm45": {

"duration": 20,
"type": "mw",
"cc_light_instr": "xm45"

},
"y45": {

"duration": 20,
"type": "mw",
"cc_light_instr": "y45"

},
"ym45": {

"duration": 20,
"type": "mw",
"cc_light_instr": "ym45"

},
"cz": {

"duration": 40,
"type": "flux",
"cc_light_instr": "cz"

(continues on next page)

122 Chapter 1. How to read the documentation

OpenQL

(continued from previous page)

},
"cnot": {

"duration": 80,
"type": "flux",
"cc_light_instr": "cnot"

},
"swap": {

"duration": 200,
"type": "flux",
"cc_light_instr": "swap"

},
"move": {

"duration": 140,
"type": "flux",
"cc_light_instr": "move"

}
},

"gate_decomposition": {
"toffoli %0,%1,%2" : ["y90 %0", "xm45 %0", "y %0", "y90 %1", "xm45 %1", "ym90

→˓%1", "x %2", "ym90 %2", "cz %2,%0", "y %0", "x45 %0", "y %0", "ym90 %2","cz %1,%2",
→˓"y %2","cz %1,%0","y %0", "x45 %2", "y %2", "xm45 %0", "y %0","cz %1,%2","y90 %2",
→˓"cz %2,%0","y %0", "x45 %0", "y %0", "y90 %2", "xm45 %2", "ym90 %2", "cz %1,%0",
→˓"y90 %0", "x %2", "ym90 %2"],

"rx180 %0" : ["x %0"],
"ry180 %0" : ["y %0"],
"rx90 %0" : ["x90 %0"],
"ry90 %0" : ["y90 %0"],
"mrx90 %0" : ["xm90 %0"],
"mry90 %0" : ["ym90 %0"],
"rx45 %0" : ["x45 %0"],
"ry45 %0" : ["y45 %0"],
"mrx45 %0" : ["xm45 %0"],
"mry45 %0" : ["ym45 %0"],
"measx %0" : ["h %0", "measure %0"],
"measz %0" : ["measure %0"],

"swap_real %0,%1": ["cnot %0,%1", "cnot %1,%0", "cnot %0,%1"],
"move_real %0,%1": ["cnot %1,%0", "cnot %0,%1"],
"z_real %0" : ["x %0","y %0"],
"h_real %0" : ["x %0", "ym90 %0"],
"t_real %0" : ["y90 %0", "x45 %0", "ym90 %0"],
"tdag_real %0" : ["y90 %0", "xm45 %0", "ym90 %0"],
"s_real %0" : ["y90 %0", "x90 %0", "ym90 %0"],
"sdag_real %0" : ["y90 %0", "xm90 %0", "ym90 %0"],

"cnot_prim %0,%1": ["ym90 %1","cz %0,%1","y90 %1"],
"swap_prim %0,%1": ["ym90 %1","cz %0,%1","y90 %1", "ym90 %0","cz %1,%0","y90

→˓%0", "ym90 %1","cz %0,%1","y90 %1"],
"move_prim %0,%1": ["ym90 %0","cz %1,%0","y90 %0", "ym90 %1","cz %0,%1","y90

→˓%1"],
"z_prim %0" : ["x %0","y %0"],
"h_prim %0" : ["x %0", "ym90 %0"],
"t_prim %0" : ["y90 %0", "x45 %0", "ym90 %0"],
"tdag_prim %0" : ["y90 %0", "xm45 %0", "ym90 %0"],
"s_prim %0" : ["y90 %0", "x90 %0", "ym90 %0"],

(continues on next page)

1.10. Supported architectures 123

OpenQL

(continued from previous page)

"sdag_prim %0" : ["y90 %0", "xm90 %0", "ym90 %0"]
}

}

1.10.3 None

• Pass/resource/C++ namespace: arch.none

• Acceptable "eqasm_compiler" values: "none", "qx", or ""

This is just a dummy architecture that does not include any backend passes by default, does not provide shortcuts for
any architecture-specific passes and resources, and does not do any platform-specific preprocessing on the platform
configuration file. You can use it when you just want to try OpenQL out, or when your target is an architecture-agnostic
simulator.

The default configuration file consists of relatively sane defaults for simulating the resulting cQASM output with the
QX simulator.

Default pass list

For the current/default global option values, this architecture does not insert any backend passes.

Default configuration file

When no platform configuration file is specified, the following default file is used instead.

{
"eqasm_compiler": "none",

"hardware_settings": {
"qubit_number": 10,
"cycle_time": 20

},

"instructions": {

"prep_x": {
"duration": 40

},

"prep_y": {
"duration": 40

},

"prep_z": {
"duration": 40

},

"i": {
"duration": 40

},

"h": {

(continues on next page)

124 Chapter 1. How to read the documentation

OpenQL

(continued from previous page)

"duration": 40
},

"x": {
"duration": 40

},

"y": {
"duration": 40

},

"z": {
"duration": 40

},

"x90": {
"duration": 40

},

"y90": {
"duration": 20

},

"x180": {
"duration": 40

},

"y180": {
"duration": 40

},

"mx90": {
"duration": 40

},

"my90": {
"duration": 20

},

"rx": {
"duration": 40

},

"ry": {
"duration": 40

},

"rz": {
"duration": 40

},

"s": {
"duration": 40

},

"sdag": {
"duration": 40

(continues on next page)

1.10. Supported architectures 125

OpenQL

(continued from previous page)

},

"t": {
"duration": 40

},

"tdag": {
"duration": 40

},

"cnot": {
"duration": 80

},

"toffoli": {
"duration": 80

},

"cz": {
"duration": 80

},

"swap": {
"duration": 80

},

"measure": {
"duration": 300

},

"measure_x": {
"duration": 300

},

"measure_y": {
"duration": 300

},

"measure_z": {
"duration": 300

},

"display": {
"duration": 20,
"qubits": []

},

"display_binary": {
"duration": 20,
"qubits": []

}
}

}

126 Chapter 1. How to read the documentation

OpenQL

1.11 Supported global options

This section lists all the global options currently supported by OpenQL.

Note: Most of these options exist only for backward compatibility, having been superseded by pass options. They
will be used only when the pass list is automatically generated to mimic legacy behavior, or when compatibility mode
is enabled in the compiler configuration file.

1.11.1 log_level

Must be one of LOG_NOTHING, LOG_CRITICAL, LOG_ERROR, LOG_WARNING, LOG_INFO, or LOG_DEBUG,
default LOG_NOTHING. Log levels

1.11.2 use_default_gates

Must be yes or no, default yes. Use default gates or not. TODO: document better, and work out what to do with
default gates to begin with.

1.11.3 decompose_toffoli

Must be one of no, NC, or AM, default no. Controls the behavior of Kernel.toffoli(); either decompose immediately
via the given substitution, or insert the Toffoli gate into the circuit as-is if no or unspecified.

1.11.4 issue_skip_319

Must be yes or no, default no. Issue skip instead of wait in bundles. TODO: document better, and actually fix skip
vs. wait/barrier properly once and for all.

1.11.5 unique_output

Must be yes or no, default no. Uniquify the program name as used for constructing output filenames, such that
compiling the same program multiple times yields a different name each time. When this option is set during the first
construction of a program with a particular name, the program name is used as-is, and a <program>.unique file is
generated in the output directory to track how many times a program with this name has been constructed. When a
program with the same name is constructed again later, again with this option set, a numeric suffix will be automatically
added to the program name, starting from 2. The generated suffix can be reset by simply removing the .unique file.
Note that the uniquified name is only used when %N is used in the output_prefix common pass option.

1.11. Supported global options 127

OpenQL

1.11.6 clifford_prescheduler

Must be yes or no, default no. When no compiler configuration file is specified, this controls whether to run the
Clifford optimizer before the prescheduler.

1.11.7 prescheduler

Must be yes or no, default yes. When no compiler configuration file is specified, this controls whether a basic
ASAP/ALAP scheduler without resource constraints should be run before mapping.

1.11.8 clifford_postscheduler

Must be yes or no, default no. When no compiler configuration file is specified, this controls whether to run the
Clifford optimizer after the prescheduler.

1.11.9 clifford_premapper

Must be yes or no, default no. When no compiler configuration file is specified, this controls whether to run the
Clifford optimizer before the mapper.

1.11.10 clifford_postmapper

Must be yes or no, default no. When no compiler configuration file is specified, this controls whether to run the
Clifford optimizer after the mapper.

1.11.11 output_dir

Must be any string, default test_output. When no compiler configuration file is specified, this controls the
output_prefix option for all passes; it will be set to <output_dir>/%N_%P. Defaults to test_output
for compatibility reasons. The directory will automatically be created if it does not already exist when the first output
file is written.

1.11.12 write_qasm_files

Must be yes or no, default no. When no compiler configuration file is specified, this enables writing cQASM files
before and after each default pass. When a compiler configuration file is specified, use the debug pass option common
to all passes instead.

1.11.13 write_report_files

Must be yes or no, default no. When no compiler configuration file is specified, this enables writing statistics report
files before and after each default pass. When a compiler configuration file is specified, use the debug pass option
common to all passes instead.

128 Chapter 1. How to read the documentation

OpenQL

1.11.14 scheduler

Must be one of ASAP or ALAP, default ALAP. When no compiler configuration file is specified, this controls whether
ALAP or ASAP scheduling is to be used for the default-inserted scheduler passes. Both the pre-mapping and post-
mapping schedulers are affected.

1.11.15 scheduler_uniform

Must be yes or no, default no. When no compiler configuration file is specified, this controls whether uniform
scheduling should be done instead of ASAP/ALAP (i.e. the scheduler option will be ignored). Both the pre-
mapping and post-mapping schedulers are affected.

1.11.16 scheduler_commute

Must be yes or no, default no. When no compiler configuration file is specified, this controls whether the default-
inserted scheduler passes are allowed to commute CZ and CNOT gates. This also affects the mapper.

1.11.17 scheduler_commute_rotations

Must be yes or no, default no. When no compiler configuration file is specified, this controls whether the default-
inserted scheduler passes are allowed to commute single-qubit X and Z rotations. This also affects the mapper.

1.11.18 print_dot_graphs

Must be yes or no, default no. When no compiler configuration file is specified, this controls whether data depen-
dency/schedule graphs should be written by default-inserted scheduler passes. The DOT file format is used as output
format.

1.11.19 initialplace

Must be one of no, yes, 1s, 10s, 1m, 10m, 1h, 1sx, 10sx, 1mx, 10mx, or 1hx, default no. When no compiler
configuration file is specified, this controls whether the MIP-based initial placement algorithm should be run before
running the heuristic mapper. A timeout can be specified, as listed in the allowable values. If the timeout value ends
in an ‘x’, compilation fails if the timeout is hit; otherwise, heuristic mapping is performed instead.

1.11.20 initialplace2qhorizon

Must be an integer between 0 and 100 inclusive, default 0. When no compiler configuration file is specified, this
controls how many two-qubit gates the MIP-based initial placement pass (if any) considers for each kernel. If 0 or
unspecified, all gates are considered.

1.11. Supported global options 129

OpenQL

1.11.21 mapper

Must be one of no, base, baserc, minextend, minextendrc, or maxfidelity, default no. When no
compiler configuration file is specified, this controls whether the heuristic mapper will be run, and if so, which heuristic
it should use. When no, MIP-based placement is also disabled.

1.11.22 mapinitone2one

Must be yes or no, default yes. When no compiler configuration file is specified, and the mapper is enabled, this
controls whether the mapper should assume that each kernel starts with a one-to-one mapping between virtual and real
qubits. When disabled, the initial mapping is treated as undefined.

1.11.23 mapassumezeroinitstate

Must be yes or no, default no. When no compiler configuration file is specified, and the mapper is enabled, this
controls whether the mapper should assume that each qubit starts out as zero at the start of each kernel, rather than
with an undefined state.

1.11.24 mapprepinitsstate

Must be yes or no, default no. When no compiler configuration file is specified, and the mapper is enabled, this
controls whether the mapper may assume that a user-written prepz gate actually leaves the qubit in the zero state,
rather than any other quantum state. This allows it to make some optimizations.

1.11.25 maplookahead

Must be one of no, 1qfirst, noroutingfirst, or all, default noroutingfirst. When no compiler con-
figuration file is specified, and the mapper is enabled, this controls the lookahead_mode option for the map-
per, controlling the strategy for selecting the next gate(s) to map. Refer to the mapper pass documentation for
lookahead_mode for more information.

1.11.26 mappathselect

Must be one of all or borders, default all. When no compiler configuration file is specified, and the mapper is
enabled, this controls whether to consider all paths from a source to destination qubit while routing, or to favor routing
along the borders of the search space. The latter is only supported when the qubits are given planar coordinates in the
topology section of the platform configuration file.

1.11.27 mapselectswaps

Must be one of one, all, or earliest, default all. When no compiler configuration file is specified, and the
mapper is enabled, this controls how routing interacts with speculation. Whenall, all swaps for a particular routing
option are committed immediately, before trying anything else. When one, only the first swap in the route from source
to target qubit is committed. When earliest, the swap that can be done at the earliest point is selected, which might
be the one swapping the source or target qubit.

130 Chapter 1. How to read the documentation

OpenQL

1.11.28 maprecNN2q

Must be yes or no, default no. When no compiler configuration file is specified, and the mapper is enabled, this
controls the recurse_on_nn_two_qubit option for the mapper; i.e. whether to “recurse” on nearest-neighbor
two-qubit gates. NOTE: this is an advanced/unstable option; don’t use it unless you know what you’re doing. May be
removed or changed in a later version of OpenQL.

1.11.29 mapselectmaxlevel

Must be an integer between 0 and 10 inclusive or inf, default 0. When no compiler configuration file is specified, and
the mapper is enabled, this controls the maximum recursion depth while searching for alternative mapping solutions.
NOTE: this is an advanced/unstable option; don’t use it unless you know what you’re doing. May be removed or
changed in a later version of OpenQL.

1.11.30 mapselectmaxwidth

Must be one of min, minplusone, minplushalfmin, minplusmin, or all, default min. When no compiler
configuration file is specified, and the mapper is enabled, this limits how many alternative mapping solutions are
considered. min means only the best-scoring alternatives are considered, minplusone means the best scoring
alternatives plus one more are considered, minplushalfmin means 1.5x the number of best-scoring alternatives
are considered, minplusmin means 2x, and all means they are all considered. NOTE: this is an advanced/unstable
option; don’t use it unless you know what you’re doing. May be removed or changed in a later version of OpenQL.

1.11.31 maptiebreak

Must be one of first, last, random, or critical, default random. When no compiler configuration file
is specified, and the mapper is enabled, this controls how to tie-break equally-scoring alternative mapping solutions.
first and last choose respectively the first and last solution in the list (assuming the qubits have planar coordinates
specified in the topology section, first selects the left-most alternative with the two-qubit gate near target, and
last selects the right-most alternative with the two-qubit gate near source; when no coordinates are given the choice
is undefined, though deterministic), random uses random number generation to select an alternative, and critical
favors the alternative that maps the most critical gate as determined by the scheduler (if any).

1.11.32 mapusemoves

Must be an integer between 0 and 20 inclusive or one of no or yes, default yes. When no compiler configuration
file is specified, and the mapper is enabled, this controls if/when the mapper inserts move gates rather than swap gates
to perform routing. If no, swap gates are always used. Otherwise, a move gate is used if the other qubit has been
initialized, or if initializing it only extends the circuit by the given number of cycles. yes implies this limit is 0 cycles.

1.11.33 mapreverseswap

Must be yes or no, default yes. When no compiler configuration file is specified, and the mapper is enabled, this
controls whether the mapper will reverse the operands for a swap gate when reversal improves the schedule. NOTE:
this currently assumes that the second qubit operand of the swap gate decomposition in the platform configuration file
is used before than the first operand; if this is not the case, enabling this will worsen the routing result rather than
improve it.

1.11. Supported global options 131

OpenQL

1.11.34 backend_cc_map_input_file

Must be any string, no default value. When no compiler configuration file is specified, and the CC backend pass is
inserted automatically, this controls its map_input_file option, which specifies the input map filename.

1.11.35 backend_cc_verbose

Must be yes or no, default yes. When no compiler configuration file is specified, and the CC backend pass is
inserted automatically, this controls its verbose option, which selects whether verbose comments should be added
to the generated .vq1asm file.

1.11.36 backend_cc_run_once

Must be yes or no, default no. When no compiler configuration file is specified, and the CC backend pass is inserted
automatically, this controls its run_once option, which creates a .vq1asm program that runs once instead of repeating
indefinitely.

1.11.37 quantumsim

Must be one of no, default no. Quantumsim output is no longer supported by OpenQL. This option only exists to not
break existing code that sets the option to no.

1.11.38 cz_mode

Must be one of manual or auto, default manual. This option is no longer used by OpenQL. It’s just there to not
break existing code that sets the option.

1.11.39 scheduler_post179

Must be yes or no, default yes. This option is no longer used by OpenQL. It’s just there to not break existing code
that sets the option.

1.11.40 optimize

Must be yes or no, default no. This option is no longer used by OpenQL. It’s just there to not break existing code
that sets the option.

1.11.41 generate_code

Must be yes or no, default yes. This option is no longer used by OpenQL. It’s just there to not break existing code
that sets the option.

132 Chapter 1. How to read the documentation

OpenQL

1.12 Supported passes

This section lists all the compiler pass types currently available within OpenQL.

1.12.1 Statistics cleaner

Type name(s): ana.statistics.Clean.

This pass just discards any statistics that previous passes might have attached to the kernel and program. It is inserted
automatically after every normal pass that does not have statistics reporting enabled.

Options

output_prefix

Must be any string, default %N.%P. Format string for the prefix used for all output products. %n is substituted with
the user-specified name of the program. %N is substituted with the optionally uniquified name of the program. %p
is substituted with the local name of the pass within its group. %P is substituted with the fully-qualified name of the
pass, using periods as hierarchy separators (guaranteed unique). %U is substituted with the fully-qualified name of
the pass, using underscores as hierarchy separators. This may not be completely unique,%D is substituted with the
fully-qualified name of the pass, using slashes as hierarchy separators. Any directories that don’t exist will be created
as soon as an output file is written.

debug

Must be one of no, yes, stats, qasm, or both, default no. May be used to implicitly surround this pass with
cQASM/report file output printers, to aid in debugging. Set to no to disable this functionality or to yes to write
a cQASM file before and after that includes statistics as comments. The filename is built using the output_prefix
option, using suffix _debug_[in|out].cq. The option values stats, cqasm, and both are used for backward
compatibility with the write_qasm_files and write_report_files global options; for stats and both
a statistics report file is written with suffix _[in|out].report, and for qasm and both a cQASM file is written
(without stats in the comments) with suffix _[in|out].qasm.

1.12.2 Statistics reporter

Type name(s): ana.statistics.Report.

This pass reports some basic statistics of the program and each kernel to a report file. Some passes may also attach ad-
ditional pass-specific statistics to the program and kernels, in which case these are printed and subsequently discarded
as well.

1.12. Supported passes 133

OpenQL

Options

output_prefix

Must be any string, default %N.%P. Format string for the prefix used for all output products. %n is substituted with
the user-specified name of the program. %N is substituted with the optionally uniquified name of the program. %p
is substituted with the local name of the pass within its group. %P is substituted with the fully-qualified name of the
pass, using periods as hierarchy separators (guaranteed unique). %U is substituted with the fully-qualified name of
the pass, using underscores as hierarchy separators. This may not be completely unique,%D is substituted with the
fully-qualified name of the pass, using slashes as hierarchy separators. Any directories that don’t exist will be created
as soon as an output file is written.

debug

Must be one of no, yes, stats, qasm, or both, default no. May be used to implicitly surround this pass with
cQASM/report file output printers, to aid in debugging. Set to no to disable this functionality or to yes to write
a cQASM file before and after that includes statistics as comments. The filename is built using the output_prefix
option, using suffix _debug_[in|out].cq. The option values stats, cqasm, and both are used for backward
compatibility with the write_qasm_files and write_report_files global options; for stats and both
a statistics report file is written with suffix _[in|out].report, and for qasm and both a cQASM file is written
(without stats in the comments) with suffix _[in|out].qasm.

output_suffix

Must be any string, default .txt. Suffix to use for the output filename.

line_prefix

Must be any string, no default value. Historically, report files contain a “# ” prefix before each line. You can use this
option to emulate that behavior.

1.12.3 Circuit visualizer

Type name(s): ana.visualize.Circuit.

The circuit visualizer produces an image of the circuit containing the operations on each qubit per cycle. If so config-
ured, it can also render instrument waveforms alongside it.

Configuration file structure

The visualizer is configured by way of the visualizer configuration file. Each attribute has a default setting, so many
can be omitted if no change is wanted.

The circuit visualizer supports the following top-level sections:

• "circuit": contains options for the circuit visualization, including pulse visualization.

• "saveImage": a boolean indicating whether the generated image should be saved to disk. When this is true,
the file will be saved regardless of/in addition to the interactive window as controlled by the interactive
option.

• "backgroundColor": the background color of the generated image.

134 Chapter 1. How to read the documentation

OpenQL

Note: A single visualizer configuration file may be used for all three visualization pass types. The configuration file
format is designed to be cross-compatible.

Note: When the to-be-visualized circuit is very large, the interactive window may have trouble rendering the circuit
even when zoomed in. Therefore, it is recommended to use non-interactive mode and view the generated bitmap with
a more capable external viewer.

The "circuit" section has several child sections.

• "cycles": contains parameters that govern cycle labels, edges, cycle compression and cutting.

• "bitLines": defines the labels and lines, including grouping lines for both quantum and classical bitLines.

• "grid": defines several parameters of the image grid.

• "gateDurationOutlines": controls parameters for gate duration outlines.

• "measurements": several parameters controlling measurement visualization.

• "pulses": parameters for pulse visualization.

• "instructions": a map of instruction types (the keys) with that type’s gate visualization as value, used for
custom instructions.

Example configuration (self-explanatory attributes have no description):

"cycles": {
// parameters for the labels above each cycle
"labels": {

"show": true,
// whether the cycle labels should be shown in nanoseconds or
// cycle numbers
"inNanoSeconds": false,
// the height of the cycle label row
"rowHeight": 24,
"fontHeight": 13,
"fontColor": [0, 0, 0]

},
// parameters for the vertical edges between cycles
"edges": {

"show": true,
"color": [0, 0, 0],
"alpha": 0.2

},
// parameters for the cutting of cycles (cycles are cut when no new
// gates are started)
"cutting": {

"cut": true,
// how many cycles should be without a gate starting before the
// cycle is cut
"emptyCycleThreshold": 2,
"cutCycleWidth": 16,
// a multiplier on the width of the cut cycles
"cutCycleWidthModifier": 0.5

},
// cycles are compressed by reducing each gate's duration to one cycle
"compressCycles": false,

(continues on next page)

1.12. Supported passes 135

OpenQL

(continued from previous page)

// partitioning a cycle means that each gate in that cycle gets its
// own column within the cycle; this can be done to remove visual
// overlap
"partitionCyclesWithOverlap": true

},
"bitLines": {

// parameters for the labels on each quantum or classical bit line
"labels": {

"show": true,
// the width of the label column
"columnWidth": 32,
"fontHeight": 13,
// the colors of quantum and classical bit labels
"qbitColor": [0, 0, 0],
"cbitColor": [128, 128, 128]

},
// parameters specifically for quantum bit lines
"quantum": {

"color": [0, 0, 0]
},
// parameters specifically for classical bit lines
"classical": {

"show": true,
// grouping classical bit lines collapses them into a double line
// to reduce visual clutter
"group": false,
// controls the gap between the double line indicating the
// collapsed classical lines
"groupedLineGap": 2,
"color": [128, 128, 128]

},
// parameters for the horizontal edges between bit lines
"edges": {

"show": false,
"thickness": 5,
"color": [0, 0, 0],
"alpha": 0.4

}
},
"grid": {

// the size of each cell formed by a the crossing of a single bit line
// and cycle
"cellSize": 32,
// the border at the edges of the generated image
"borderSize": 32

},
"gateDurationOutlines": {

"show": true,
// the gap between the edge of the cell and the gate duration outline
"gap": 2,
// the filled background alpha
"fillAlpha": 0.2,
// the outline alpha
"outlineAlpha": 0.3,
"outlineColor": [0, 0, 0]

},
"measurements": {

(continues on next page)

136 Chapter 1. How to read the documentation

OpenQL

(continued from previous page)

// whether to draw a connection from the measurement gate to the
// classical line it stores the result in
"drawConnection": true,
// the gap between the double line representing the connection
"lineSpacing": 2,
"arrowSize": 10

},
"pulses": {

// set this to true to use the pulse visualization
"displayGatesAsPulses": false,
// these heights control the line row heights
"pulseRowHeightMicrowave": 32,
"pulseRowHeightFlux": 32,
"pulseRowHeightReadout": 32,
// these colors control the line colors
"pulseColorMicrowave": [0, 0, 255],
"pulseColorFlux": [255, 0, 0],
"pulseColorReadout": [0, 255, 0]

},
"instructions" {

// defined below
}

Gate visualization

When using default gates, the visualizations for each gate are built in. However, default gates are mostly deprecated
(aside from a few exceptions such as barrier), and will likely be removed in the future.

When using custom gates, the default gate visualizations are not used, so the visualization needs to be defined by the
user. In the instructions section of the visualizer configuration file, each instruction “type” has its own corresponding
description of gate visualization parameters. These instruction types are mapped to actual custom instructions from
the hardware configuration file by adding a "visual_type" key to the instructions. For example:

{
...,
"instructions" {

...,
"h q1": {

"duration": 40,
"qubits": ["q1"],
"visual_type": "h"

},
...

},
...

}

This custom Hadamard gate defined on qubit 1 has one additional attribute "visual_type" describing its visual-
ization type. The value of this attribute links to a key in the visualizer configuration file, which has the description of
the gate visualization parameters that will be used to visualize this custom instruction. Note that this allows multiple
custom instructions to share the same visualization parameters, without having to duplicate the parameters.

The instructions section of the visualizer configuration file then defines how each gate type is rendered. Here’s
an excerpt from an example configuration file:

1.12. Supported passes 137

OpenQL

{
...,
"instructions": {

...,
"h": {

"connectionColor": [0, 0, 0],
"nodes": [

{
"type": "GATE",
"radius": 13,
"displayName": "H",
"fontHeight": 13,
"fontColor": [255, 255, 255],
"backgroundColor": [70, 210, 230],
"outlineColor": [70, 210, 230]

}
]

},
...

},
...

}

Each gate has a "connectionColor" which defines the color of the connection line for multi-operand gates, and
an array of "nodes". A node is the visualization of the gate acting on a specific qubit or classical bit. If a Hadamard
gate is acting on qubit 3, that is represented by one node. If a CNOT gate is acting on qubits 1 and 2, it will have two
nodes, one describing the visualization of the CNOT gate at qubit 1 and one describing the visualization on qubit 2. A
measurement gate measuring qubit 5 and storing the result in classical bit 0 will again have two nodes.

Each node has several attributes describing its visualization.

• "type": the visualization type of the node, see below for a list of the available types.

• "radius": the radius of the node in pixels.

• "displayName": text that will be displayed on the node (for example "H"will be displayed on the Hadamard
gate in the example above).

• "fontHeight": the height of the font in pixels used by the "displayName".

• "fontColor": the color of the font used by the "displayName".

• "backgroundColor": the background color of the node.

• "outlineColor": the color of the edge-line of the node.

The colors are defined as RGB arrays: [R, G, B].

The type of the nodes can be one of the following.

• "NONE": the node will not be visible.

• "GATE": a square representing a gate.

• "CONTROL": a small filled circle.

• "NOT": a circle outline with cross inside (a CNOT cross).

• "CROSS": a diagonal cross.

When a gate has multiple operands, each operand should have a node associated with it. Simply create as many nodes
in the node array as there are operands and define a type and visual parameters for it. Don’t forget the comma to

138 Chapter 1. How to read the documentation

OpenQL

separate each node in the array. Note that nodes are coupled to each operand sequentially, i.e. the first node in the
node array will be used for the first qubit in the operand vector.

Pulse visualization

Along with an abstract representation of the gates used in the quantum circuit, the gates can also be represented by
the RF pulses used in the real hardware. This will be done when the "displayGatesAsPulses" flag in the
"pulses" section is set to true. In this case, the waveform_mapping option must be used to specify a waveform
configuration file.

Each qubit consists of three lines, the microwave, flux and readout lines, controlling single-qubit gates, two-qubit
gates and readouts respectively. The waveforms used by the hardware should be stored in the waveform mapping
configuration file. Then, in the hardware configuration file the "visual_codeword" and "qubits" attributes
of each instruction are used as key into the table contained in the waveform mapping file to find the corresponding
waveform for the specific instruction and qubit (waveforms for the same instruction can be different for different
qubits). Note that a two-qubit gate has two codeword attributes, one for each qubit: "visual_right_codeword"
and "visual_left_codeword".

In the waveform mapping configuration file, the waveforms are grouped by codeword first and then by addressed qubit.
The waveforms themselves are stored as an array of real numbers. The scale of these numbers does not matter, the
visualizer will automatically scale the pulses to fit inside the graph. The time between samples is determined by the
sample rate (the sample rate can be different for each of the three lines).

TODO: the structure of the waveform mapping configuration file should still be documented. For now, use the exam-
ples in tests/visualizer as a baseline.

Options

output_prefix

Must be any string, default %N.%P. Format string for the prefix used for all output products. %n is substituted with
the user-specified name of the program. %N is substituted with the optionally uniquified name of the program. %p
is substituted with the local name of the pass within its group. %P is substituted with the fully-qualified name of the
pass, using periods as hierarchy separators (guaranteed unique). %U is substituted with the fully-qualified name of
the pass, using underscores as hierarchy separators. This may not be completely unique,%D is substituted with the
fully-qualified name of the pass, using slashes as hierarchy separators. Any directories that don’t exist will be created
as soon as an output file is written.

debug

Must be one of no, yes, stats, qasm, or both, default no. May be used to implicitly surround this pass with
cQASM/report file output printers, to aid in debugging. Set to no to disable this functionality or to yes to write
a cQASM file before and after that includes statistics as comments. The filename is built using the output_prefix
option, using suffix _debug_[in|out].cq. The option values stats, cqasm, and both are used for backward
compatibility with the write_qasm_files and write_report_files global options; for stats and both
a statistics report file is written with suffix _[in|out].report, and for qasm and both a cQASM file is written
(without stats in the comments) with suffix _[in|out].qasm.

1.12. Supported passes 139

OpenQL

config

Must be any string, default visualizer_config.json. Path to the visualizer configuration file.

waveform_mapping

Must be any string, default waveform_mapping.json. Path to the visualizer waveform mapping file.

interactive

Must be yes or no, default no. When yes, the visualizer will open a window when the pass is run. When no, an
image will be saved as <output_prefix>.bmp instead.

1.12.4 Qubit interaction graph visualizer

Type name(s): ana.visualize.Interaction.

The qubit interaction graph visualizes the interactions between each of the qubits in the circuit. If a gate acts on two
or more qubits, those qubits interact with each other and an edge will be drawn in the graph, with a number indicating
the amount of times those qubits have interacted with each other. Note that the visualization of this is very simple, and
the DOT graph the visualizer can produce should be used with the user’s favorite graphing software to create a better
looking graph.

Configuration file structure

The visualizer is configured by way of the visualizer configuration file. Each attribute has a default setting, so many
can be omitted if no change is wanted.

The circuit visualizer supports the following top-level sections:

• "interactionGraph": contains options for the interaction graph.

• "saveImage": a boolean indicating whether the generated image should be saved to disk. When this is true,
the file will be saved regardless of/in addition to the interactive window as controlled by the interactive
option.

• "backgroundColor": the background color of the generated image.

Note: A single visualizer configuration file may be used for all three visualization pass types. The configuration file
format is designed to be cross-compatible.

The "interactionGraph" section should have the following structure.

"interactionGraph": {
// whether a DOT file should be generated for use with graphing
// software
"outputDotFile": true,
"borderWidth": 32,
// the minimum radius of the circle on which the qubits are placed
"minInteractionCircleRadius": 100,
"interactionCircleRadiusModifier": 3.0,
"qubitRadius": 17,

(continues on next page)

140 Chapter 1. How to read the documentation

OpenQL

(continued from previous page)

"labelFontHeight": 13,
"circleOutlineColor": [0, 0, 0],
"circleFillColor": [255, 255, 255],
"labelColor": [0, 0, 0],
"edgeColor": [0, 0, 0]

}

Options

output_prefix

Must be any string, default %N.%P. Format string for the prefix used for all output products. %n is substituted with
the user-specified name of the program. %N is substituted with the optionally uniquified name of the program. %p
is substituted with the local name of the pass within its group. %P is substituted with the fully-qualified name of the
pass, using periods as hierarchy separators (guaranteed unique). %U is substituted with the fully-qualified name of
the pass, using underscores as hierarchy separators. This may not be completely unique,%D is substituted with the
fully-qualified name of the pass, using slashes as hierarchy separators. Any directories that don’t exist will be created
as soon as an output file is written.

debug

Must be one of no, yes, stats, qasm, or both, default no. May be used to implicitly surround this pass with
cQASM/report file output printers, to aid in debugging. Set to no to disable this functionality or to yes to write
a cQASM file before and after that includes statistics as comments. The filename is built using the output_prefix
option, using suffix _debug_[in|out].cq. The option values stats, cqasm, and both are used for backward
compatibility with the write_qasm_files and write_report_files global options; for stats and both
a statistics report file is written with suffix _[in|out].report, and for qasm and both a cQASM file is written
(without stats in the comments) with suffix _[in|out].qasm.

config

Must be any string, default visualizer_config.json. Path to the visualizer configuration file.

interactive

Must be yes or no, default no. When yes, the visualizer will open a window when the pass is run. When no, an
image will be saved as <output_prefix>.bmp instead.

1.12.5 Qubit mapping graph visualizer

Type name(s): ana.visualize.Mapping.

The mapping graph tracks the journey of the virtual qubits through the real topology of the quantum hardware as the
cycles of the quantum program are executed. The virtual qubits change location whenever a swap/move gate (or their
decomposed parts) is finished executing. For convenience, the abstract circuit representation of the quantum program
is shown above the qubit mappings for each cycle.

1.12. Supported passes 141

OpenQL

The topology of the quantum hardware is taken from the topology section in the hardware configuration file, together
with the edges between the qubits. If no coordinates and/or edges are defined for the qubits, the qubits will simply be
spaced sequentially in a grid structure without edges being shown.

Configuration file structure

The visualizer is configured by way of the visualizer configuration file. Each attribute has a default setting, so many
can be omitted if no change is wanted.

The circuit visualizer supports the following top-level sections:

• "mappingGraph": contains options for the mapping graph.

• "saveImage": a boolean indicating whether the generated image should be saved to disk. When this is true,
the file will be saved regardless of/in addition to the interactive window as controlled by the interactive
option.

• "backgroundColor": the background color of the generated image.

Note: A single visualizer configuration file may be used for all three visualization pass types. The configuration file
format is designed to be cross-compatible.

The "mappingGraph" section should have the following structure.

"mappingGraph": {
// whether qubits should be filled with the corresponding logical
// qubit index in the first cycle
"initDefaultVirtuals": false,
// give each distinct virtual qubit a color
"showVirtualColors": true,
// show the real qubit indices above the qubits
"showRealIndices": true,
// whether to use the topology from the hardware configuration file
"useTopology": true,
// parameters for controlling the layout
"qubitRadius": 15,
"qubitSpacing": 7,
"fontHeightReal": 13,
"fontHeightVirtual": 13,
"textColorReal": [0, 0, 255],
"textColorVirtual": [255, 0, 0],
// the gap between the qubit and the real index
"realIndexSpacing": 1,
"qubitFillColor": [255, 255, 255],
"qubitOutlineColor": [0, 0, 0]

}

142 Chapter 1. How to read the documentation

OpenQL

Options

output_prefix

Must be any string, default %N.%P. Format string for the prefix used for all output products. %n is substituted with
the user-specified name of the program. %N is substituted with the optionally uniquified name of the program. %p
is substituted with the local name of the pass within its group. %P is substituted with the fully-qualified name of the
pass, using periods as hierarchy separators (guaranteed unique). %U is substituted with the fully-qualified name of
the pass, using underscores as hierarchy separators. This may not be completely unique,%D is substituted with the
fully-qualified name of the pass, using slashes as hierarchy separators. Any directories that don’t exist will be created
as soon as an output file is written.

debug

Must be one of no, yes, stats, qasm, or both, default no. May be used to implicitly surround this pass with
cQASM/report file output printers, to aid in debugging. Set to no to disable this functionality or to yes to write
a cQASM file before and after that includes statistics as comments. The filename is built using the output_prefix
option, using suffix _debug_[in|out].cq. The option values stats, cqasm, and both are used for backward
compatibility with the write_qasm_files and write_report_files global options; for stats and both
a statistics report file is written with suffix _[in|out].report, and for qasm and both a cQASM file is written
(without stats in the comments) with suffix _[in|out].qasm.

config

Must be any string, default visualizer_config.json. Path to the visualizer configuration file.

interactive

Must be yes or no, default no. When yes, the visualizer will open a window when the pass is run. When no, an
image will be saved as <output_prefix>.bmp instead.

1.12.6 Central Controller code generator

Type name(s): arch.cc.gen.VQ1Asm.

Assembly code generator for the Q1 processor in the QuTech Central Controller, version 0.3.1

This pass actually generates three files:

• <prefix>.vq1asm: the assembly code output file;

• <prefix>.map: the instrument configuration file; and

• <prefix>.vcd: a VCD (value change dump) file for viewing the waveforms that the program outputs.

The pass is compile-time configured with the following options:

• OPT_CC_SCHEDULE_RC = 0

• OPT_SUPPORT_STATIC_CODEWORDS = 1

• OPT_STATIC_CODEWORDS_ARRAYS = 1

• OPT_VECTOR_MODE = 0

1.12. Supported passes 143

OpenQL

• OPT_FEEDBACK = 1

• OPT_PRAGMA = 1

Options

output_prefix

Must be any string, default %N.%P. Format string for the prefix used for all output products. %n is substituted with
the user-specified name of the program. %N is substituted with the optionally uniquified name of the program. %p
is substituted with the local name of the pass within its group. %P is substituted with the fully-qualified name of the
pass, using periods as hierarchy separators (guaranteed unique). %U is substituted with the fully-qualified name of
the pass, using underscores as hierarchy separators. This may not be completely unique,%D is substituted with the
fully-qualified name of the pass, using slashes as hierarchy separators. Any directories that don’t exist will be created
as soon as an output file is written.

debug

Must be one of no, yes, stats, qasm, or both, default no. May be used to implicitly surround this pass with
cQASM/report file output printers, to aid in debugging. Set to no to disable this functionality or to yes to write
a cQASM file before and after that includes statistics as comments. The filename is built using the output_prefix
option, using suffix _debug_[in|out].cq. The option values stats, cqasm, and both are used for backward
compatibility with the write_qasm_files and write_report_files global options; for stats and both
a statistics report file is written with suffix _[in|out].report, and for qasm and both a cQASM file is written
(without stats in the comments) with suffix _[in|out].qasm.

map_input_file

Must be any string, no default value. Specifies the input map filename.

verbose

Must be yes or no, default yes. Selects whether verbose comments should be added to the generated .vq1asm file.

run_once

Must be yes or no, default no. When set, the emitted .vq1asm program runs once instead of repeating indefinitely.

1.12.7 cQASM reader

Type name(s): io.cqasm.Read.

This pass completely discards the incoming program and replaces it with the program described by the given cQASM
file.

Because libqasm (the library used by this pass to parse cQASM files; see http://libqasm.readthedocs.io/) needs infor-
mation about gate prototypes that does not currently exist in the platform configuration file, an additional configuration
file is needed for this, specified using the gateset_file option. This must be a JSON file consisting of an array of
objects, where each object has the following form.

144 Chapter 1. How to read the documentation

http://libqasm.readthedocs.io/

OpenQL

{
"name": "<name>", # mandatory
"params": "<typespec>", # mandatory, refer to cqasm::types::from_spec()
"allow_conditional": <bool>, # whether conditional gates of this type are

→˓accepted,
defaults to true

"allow_parallel": <bool>, # whether parallel gates of this type are
→˓accepted,

defaults to true
"allow_reused_qubits": <bool>, # whether reused qubit args for this type are

→˓accepted,
defaults to false

"ql_name": "<name>", # defaults to "name"
"ql_qubits": [# list or "all", defaults to the "Q" args

0, # hardcoded qubit index
"%0" # reference to argument 0, which can be a

→˓qubitref, bitref,
or int

],
"ql_cregs": [# list or "all", defaults to the "I" args

0, # hardcoded creg index
"%0" # reference to argument 0, which can be an int

→˓variable
reference, or int for creg index

],
"ql_bregs": [# list or "all", defaults to the "B" args

0, # hardcoded breg index
"%0" # reference to argument 0, which can be an int

→˓variable
reference, or int for creg index

],
"ql_duration": 0, # duration; int to hardcode or "%i" to take from

→˓param i
(must be of type int), defaults to 0

"ql_angle": 0.0, # angle; float to hardcode or "%i" to take from
→˓param i

(must be of type int or real), defaults to
→˓first arg

of type real or 0.0
"ql_angle_type": "<type>", # interpretation of angle arg; one of "rad"

→˓(radians),
"deg" (degrees), or "pow2" (2pi/2^k radians),

→˓defaults
to "rad"

"implicit_sgmq": <bool>, # if multiple qubit args are present, a single-
→˓qubit gate

of this type should be replicated for these
→˓qubits

(instead of a single gate with many qubits)
"implicit_breg": <bool> # the breg operand(s) that implicitly belongs to

→˓the qubit
operand(s) in the gate should be added to the

→˓OpenQL
operand list

}

1.12. Supported passes 145

OpenQL

Options

output_prefix

Must be any string, default %N.%P. Format string for the prefix used for all output products. %n is substituted with
the user-specified name of the program. %N is substituted with the optionally uniquified name of the program. %p
is substituted with the local name of the pass within its group. %P is substituted with the fully-qualified name of the
pass, using periods as hierarchy separators (guaranteed unique). %U is substituted with the fully-qualified name of
the pass, using underscores as hierarchy separators. This may not be completely unique,%D is substituted with the
fully-qualified name of the pass, using slashes as hierarchy separators. Any directories that don’t exist will be created
as soon as an output file is written.

debug

Must be one of no, yes, stats, qasm, or both, default no. May be used to implicitly surround this pass with
cQASM/report file output printers, to aid in debugging. Set to no to disable this functionality or to yes to write
a cQASM file before and after that includes statistics as comments. The filename is built using the output_prefix
option, using suffix _debug_[in|out].cq. The option values stats, cqasm, and both are used for backward
compatibility with the write_qasm_files and write_report_files global options; for stats and both
a statistics report file is written with suffix _[in|out].report, and for qasm and both a cQASM file is written
(without stats in the comments) with suffix _[in|out].qasm.

cqasm_file

Must be any string, no default value. cQASM file to read. Mandatory.

gateset_file

Must be any string, no default value. JSON gateset configuration file path. Mandatory.

1.12.8 cQASM writer

Type name(s): io.cqasm.Report.

This pass writes the current program out as a cQASM file.

Options

output_prefix

Must be any string, default %N.%P. Format string for the prefix used for all output products. %n is substituted with
the user-specified name of the program. %N is substituted with the optionally uniquified name of the program. %p
is substituted with the local name of the pass within its group. %P is substituted with the fully-qualified name of the
pass, using periods as hierarchy separators (guaranteed unique). %U is substituted with the fully-qualified name of
the pass, using underscores as hierarchy separators. This may not be completely unique,%D is substituted with the
fully-qualified name of the pass, using slashes as hierarchy separators. Any directories that don’t exist will be created
as soon as an output file is written.

146 Chapter 1. How to read the documentation

OpenQL

debug

Must be one of no, yes, stats, qasm, or both, default no. May be used to implicitly surround this pass with
cQASM/report file output printers, to aid in debugging. Set to no to disable this functionality or to yes to write
a cQASM file before and after that includes statistics as comments. The filename is built using the output_prefix
option, using suffix _debug_[in|out].cq. The option values stats, cqasm, and both are used for backward
compatibility with the write_qasm_files and write_report_files global options; for stats and both
a statistics report file is written with suffix _[in|out].report, and for qasm and both a cQASM file is written
(without stats in the comments) with suffix _[in|out].qasm.

output_suffix

Must be any string, default .cq. Suffix to use for the output filename.

with_statistics

Must be yes or no, default no. Whether to include the current statistics for each kernel and the complete program in
the generated comments.

1.12.9 Sweep points writer

Type name(s): io.sweep_points.Write.

Writes a simple JSON file of the following form:

{ "measurement_points": [...] }

wherein the ellipsis is populated with the contents of the sweep points array specified to the program through the
set_sweep_points(). API call. The filename defaults to <output_prefix>.json, but this may be overridden
using the set_config_file() API call on program.

This pass has no further use and only exists for backward compatibility. It may be removed entirely in a later version
of OpenQL.

Options

output_prefix

Must be any string, default %N.%P. Format string for the prefix used for all output products. %n is substituted with
the user-specified name of the program. %N is substituted with the optionally uniquified name of the program. %p
is substituted with the local name of the pass within its group. %P is substituted with the fully-qualified name of the
pass, using periods as hierarchy separators (guaranteed unique). %U is substituted with the fully-qualified name of
the pass, using underscores as hierarchy separators. This may not be completely unique,%D is substituted with the
fully-qualified name of the pass, using slashes as hierarchy separators. Any directories that don’t exist will be created
as soon as an output file is written.

1.12. Supported passes 147

OpenQL

debug

Must be one of no, yes, stats, qasm, or both, default no. May be used to implicitly surround this pass with
cQASM/report file output printers, to aid in debugging. Set to no to disable this functionality or to yes to write
a cQASM file before and after that includes statistics as comments. The filename is built using the output_prefix
option, using suffix _debug_[in|out].cq. The option values stats, cqasm, and both are used for backward
compatibility with the write_qasm_files and write_report_files global options; for stats and both
a statistics report file is written with suffix _[in|out].report, and for qasm and both a cQASM file is written
(without stats in the comments) with suffix _[in|out].qasm.

1.12.10 Mapper

Type name(s): map.qubits.Map.

The purpose of this pass is to ensure that the qubit connectivity constraints are met for all multi-qubit gates in each
kernel. This is done by optionally applying a mixed integer linear programming algorithm to look for a perfect solution
that does not require routing or figure out a good initial qubit placement, and then by heuristically inserting swap/move
gates to change the mapping on the fly as needed. Finally, it decomposes all gates in the circuit to primitive gates.

Note: The substeps of this pass will probably be subdivided into individual passes in the future.

Warning: This pass currently operates purely on a per-kernel basis. Because it may adjust the qubit mapping
from input to output, a program consisting of multiple kernels that maintains a quantum state between the kernels
may be silently destroyed.

Initial placement

This step attempts to find a single mapping of the virtual qubits of a circuit to the real qubits of the platform’s qubit
topology that minimizes the sum of the distances between the two mapped operands of all two-qubit gates in the
circuit. The distance between two real qubits is the minimum number of swaps that is required to move the state of
one of the two qubits to the other. It employs a Mixed Integer Linear Programming (MIP) algorithm to solve this,
modelled as a Quadratic Assignment Problem. If enabled, this step may find a mapping that is optimal for the whole
circuit, but because its time-complexity is exponential with respect to the size of the circuit, this may take quite some
computer time. Also, the result is only really useful when in the mapping found all mapped operands of two-qubit
gates are nearest-neighbor (i.e. distance 1). So, there is no guarantee for success: it may take too long and the result
may not be optimal.

Note: Availability of this step depends on the build configuration of OpenQL due to license conflicts with the library
used for solving the MIP problem. If it is not included, the step is effectively no-op, and a warning message will be
printed.

148 Chapter 1. How to read the documentation

OpenQL

Heuristic routing

This step essentially transforms the program by iterating over its gates from front to back and inserting swap or move
gates when needed. Whenever it does this, it updates its internal virtual to real qubit mapping. While iterating, the
virtual qubit indices of the incoming gates are replaced with real qubit indices, i.e. those defined in the topology
section of the platform.

Some platforms have gates for which parameters differ based on the qubits they operate on. For example, cz q0,
q1 may have a different duration than cz q2, q3, and cz q0, q2 may not even exist because of topological
constraints. However, rules like this make no sense when the cz gate is still using virtual qubit indices: it’s perfectly
fine for the user to do cz q0, q2 at the input if the mapper is enabled.

To account for this, the mapper will look for an alternative gate definition when it converts the virtual qubit indices
to real qubit indices: specifically, it will look for a gate with _real or _prim (see also the primitive decomposition
step) appended to the original gate name. For example, cz q0, q2 may, after routing, be transformed to cz_real
q2, q3. This allows you to define cz using a generalized gate definition (i.e. independent on qubit operands), and
cz_real as a set of specialized gates as required by the platform.

Note: The resolution order is *_prim, *_real, and finally just the original gate name. Thus, if you don’t need this
functionality, you don’t need to define any *_real gates.

Because the mapper inserts swap and/or move gates, it is important that these gates are actually defined in the config-
uration file (usually by means of a decomposition rule). The semantics for them must be as follows.

• swap x, y or swap_real x, y: must apply a complete swap gate to the given qubits to exchange their
state. If in the final decomposition one of the operands is used before the other, the second operand (y) is
expected to be used first for the reverse_swap_if_better option to work right.

• move x, y or move_real x, y: if use_moves is enabled, the mapper will attempt to use these gates
instead of swap/swap_real if it knows that the y qubit is in the |0> state (or it can initialize it as such) and
the result is better (or not sufficiently worse) than using a normal swap. Such a move gate can be implemented
with two CNOTs instead of three.

The order in which non-nearest-neighbor two-qubit gates are routed, the route taken for them, and where along the
route the actual two-qubit gate is performed, is determined heuristically. The way in which this is done is controlled by
the various options for this pass; it can be made really simple by just iterating over the circuit in the specified order and
just choosing a random routing alternative whenever routing is needed, or more intelligent methods can be used at the
cost of execution time and memory usage (the latter especially when a lot of alternative solutions are generated before
a choice is made). Based on these options, time and space complexity can be anywhere from linear to exponential!

Decomposition into primitives

As a final step, the mapper will try to decompose the “real” gates (i.e. gates with qubit operands referring to real
qubits) generated by the previous step into primitive gates, as actually executable by the target architecture. It does
this by attempting to suffix the name of each gate with _prim. Thus, if you define a decomposition rule named
cz_prim rather than cz, this rule will only be applied after mapping.

1.12. Supported passes 149

OpenQL

Options

output_prefix

Must be any string, default %N.%P. Format string for the prefix used for all output products. %n is substituted with
the user-specified name of the program. %N is substituted with the optionally uniquified name of the program. %p
is substituted with the local name of the pass within its group. %P is substituted with the fully-qualified name of the
pass, using periods as hierarchy separators (guaranteed unique). %U is substituted with the fully-qualified name of
the pass, using underscores as hierarchy separators. This may not be completely unique,%D is substituted with the
fully-qualified name of the pass, using slashes as hierarchy separators. Any directories that don’t exist will be created
as soon as an output file is written.

debug

Must be one of no, yes, stats, qasm, or both, default no. May be used to implicitly surround this pass with
cQASM/report file output printers, to aid in debugging. Set to no to disable this functionality or to yes to write
a cQASM file before and after that includes statistics as comments. The filename is built using the output_prefix
option, using suffix _debug_[in|out].cq. The option values stats, cqasm, and both are used for backward
compatibility with the write_qasm_files and write_report_files global options; for stats and both
a statistics report file is written with suffix _[in|out].report, and for qasm and both a cQASM file is written
(without stats in the comments) with suffix _[in|out].qasm.

initialize_one_to_one

Must be yes or no, default yes. Controls whether the mapper should assume that each kernel starts with a one-to-one
mapping between virtual and real qubits. When disabled, the initial mapping is treated as undefined.

assume_initialized

Must be yes or no, default no. Controls whether the mapper should assume that each qubit starts out as zero at the
start of each kernel, rather than with an undefined state.

assume_prep_only_initializes

Must be yes or no, default no. Controls whether the mapper may assume that a user-written prepz gate actually
leaves the qubit in the zero state, rather than any other quantum state. This allows it to make some optimizations.

enable_mip_placer

Must be yes or no, default no. Controls whether the MIP-based initial placement algorithm should be run before
resorting to heuristic mapping.

150 Chapter 1. How to read the documentation

OpenQL

mip_horizon

Must be an integer less than or equal to 0, default 0. This controls how many two-qubit gates the MIP-based initial
placement algorithm considers for each kernel (if enabled). If 0 or unspecified, all gates are considered.

route_heuristic

Must be one of base, baserc, minextend, minextendrc, or maxfidelity, default base. Controls which
heuristic the router should use when selecting between possible routing operations. base and base_rc are the
simplest forms: all routes are considered equally good, so the tie-breaking strategy is just applied immediately.
minextend and minextendrc are way more involved (but also take longer to compute): these options will spec-
ulate what each option will do in terms of extending the duration of the circuit, optionally recursively, to find the
best alternatives in terms of circuit duration within somelookahead window. The existence of the rc suffix speci-
fies whether the internal scheduling for fitness determination should be done with or without resource constraints.
maxfidelity is not supported in this build of OpenQL.

tie_break_method

Must be one of first, last, random, or critical, default random. Controls how to tie-break equally-scoring
alternative mapping solutions. first and last choose respectively the first and last solution in the list (assuming
the qubits have planar coordinates specified in the topology section, first selects the left-most alternative with the
two-qubit gate near target, and last selects the right-most alternative with the two-qubit gate near source; when
no coordinates are given the choice is undefined, though deterministic), random uses random number generation
to select an alternative, and critical favors the alternative that maps the most critical gate as determined by the
scheduler (if any).

lookahead_mode

Must be one of no, 1qfirst, noroutingfirst, or all, default noroutingfirst. Controls the strategy for
selecting the next gate(s) to map. When no, just map the gates in the order of the circuit, disregarding commutation
as allowed by the circuit’s dependency graph. Single-qubit and nearest-neighbor two-qubit gates are mapped trivially;
non-nearest-neighbor gates are mapped when encountered by generating alternative routing solutions and picking the
best one via route_heuristic. For 1qfirst, the dependency graph is used to greedily map all single-qubit
gates, before proceeding with mapping the most critical two-qubit gate. If this gate is not nearest-neighbor, it is
routed the same way as for no. noroutingfirst works the same, but also greedily maps two-qubit gates that
don’t require any routing regardless of criticality, before routing the most critical non-nearest-neighbor two-qubit gate.
Finally, all works the same as noroutingfirst, but instead of considering only routing alternatives for the most
critical non-nearest-neighbor two-qubit gate, alternatives are generated for all available non-nearest-neighbor two-
qubit gates, thus ignoring criticality and relying only on route_heuristic (which may be better depending on the
heuristic chosen, but will cost execution time).

1.12. Supported passes 151

OpenQL

path_selection_mode

Must be one of all or borders, default all. Controls whether to consider all paths from a source to destination
qubit while routing, or to favor routing along the route search space. The latter is only supported and sensible when
the qubits are given planar coordinates in the topology section of the platform configuration file.

swap_selection_mode

Must be one of one, all, or earliest, default all. This controls how routing interacts with speculation. When
all, allswaps for a particular routing option are committed immediately, before trying anything else. When one,
only the first swap in the route from source to target qubit is committed. When earliest, the swap that can be done
at the earliest point is selected, which might be the one swapping the source or target qubit.

recurse_on_nn_two_qubit

Must be yes or no, default no. When a nearest-neighbor two-qubit gate is the next gate to be mapped, this controls
whether the mapper will speculate on adding it now or later, or if it will add it immediately without speculation.
NOTE: this is an advanced/unstable option that influences lookahead_mode in a complex way; don’t use it unless
you know what you’re doing. May be removed or changed in a later version of OpenQL.

recursion_depth_limit

Must be an integer less than or equal to 0 or inf, default 0. Controls the maximum recursion depth while searching for
alternative mapping solutions. NOTE: this is an advanced/unstable option; don’t use it unless you know what you’re
doing. May be removed or changed in a later version of OpenQL.

recursion_width_factor

Must be an real number less than or equal to 0, default 1. Limits how many alternative mapping solutions are consid-
ered as a factor of the number of best-scoring alternatives, rounded up. NOTE: this is an advanced/unstable option;
don’t use it unless you know what you’re doing. May be removed or changed in a later version of OpenQL.

recursion_width_exponent

Must be an real number between 0 and 1 inclusive, default 1. Adjustment for recursion_width_factor based on the
current recursion depth. For each additional level of recursion, the effective width factor is multiplied by this number.
NOTE: this is an advanced/unstable option; don’t use it unless you know what you’re doing. May be removed or
changed in a later version of OpenQL.

152 Chapter 1. How to read the documentation

OpenQL

use_moves

Must be an integer less than or equal to 0 or one of no or yes, default yes. Controls if/when the mapper inserts move
gates rather than swap gates to perform routing. If no, swap gates are always used. Otherwise, a move gate is used
if the other qubit has been initialized, or if initializing it only extends the circuit by the given number of cycles. yes
implies this limit is 0 cycles.

reverse_swap_if_better

Must be yes or no, default yes. Controls whether the mapper will reverse the operands for a swap gate when reversal
improves the schedule. NOTE: this currently assumes that the second qubit operand of the swap gate decomposition
in the platform configuration file is used before than the first operand; if this is not the case, enabling this will worsen
the routing result rather than improve it.

commute_multi_qubit

Must be yes or no, default no. Whether to consider commutation rules for the CZ and CNOT quantum gates.

commute_single_qubit

Must be yes or no, default no. Whether to consider commutation rules for single-qubit X and Z rotations.

write_dot_graphs

Must be yes or no, default no. Whether to print dot graphs of the schedules created using the embedded scheduler.

1.12.11 Clifford gate optimizer

Type name(s): opt.clifford.Optimize.

This pass tries to minimize sequences of single-qubit gates in the Clifford C1 set to their minimal counterpart in terms
of cycles. The pass returns the total number of cycles saved by this optimization per qubit.

Note that the relation between the Clifford state transition corresponding to a particular gate is currently hardcoded
based on gate name, and the equivalent cycle counts are also hardcoded.

Options

output_prefix

Must be any string, default %N.%P. Format string for the prefix used for all output products. %n is substituted with
the user-specified name of the program. %N is substituted with the optionally uniquified name of the program. %p
is substituted with the local name of the pass within its group. %P is substituted with the fully-qualified name of the
pass, using periods as hierarchy separators (guaranteed unique). %U is substituted with the fully-qualified name of
the pass, using underscores as hierarchy separators. This may not be completely unique,%D is substituted with the
fully-qualified name of the pass, using slashes as hierarchy separators. Any directories that don’t exist will be created
as soon as an output file is written.

1.12. Supported passes 153

OpenQL

debug

Must be one of no, yes, stats, qasm, or both, default no. May be used to implicitly surround this pass with
cQASM/report file output printers, to aid in debugging. Set to no to disable this functionality or to yes to write
a cQASM file before and after that includes statistics as comments. The filename is built using the output_prefix
option, using suffix _debug_[in|out].cq. The option values stats, cqasm, and both are used for backward
compatibility with the write_qasm_files and write_report_files global options; for stats and both
a statistics report file is written with suffix _[in|out].report, and for qasm and both a cQASM file is written
(without stats in the comments) with suffix _[in|out].qasm.

1.12.12 Scheduler

Type name(s): sch.Schedule.

This pass analyzes the data dependencies between gates and applies cycle numbers to them based on some scheduling
heuristic. Depending on options, the scheduler will either be resource-constrained or will ignore resources.

Options

output_prefix

Must be any string, default %N.%P. Format string for the prefix used for all output products. %n is substituted with
the user-specified name of the program. %N is substituted with the optionally uniquified name of the program. %p
is substituted with the local name of the pass within its group. %P is substituted with the fully-qualified name of the
pass, using periods as hierarchy separators (guaranteed unique). %U is substituted with the fully-qualified name of
the pass, using underscores as hierarchy separators. This may not be completely unique,%D is substituted with the
fully-qualified name of the pass, using slashes as hierarchy separators. Any directories that don’t exist will be created
as soon as an output file is written.

debug

Must be one of no, yes, stats, qasm, or both, default no. May be used to implicitly surround this pass with
cQASM/report file output printers, to aid in debugging. Set to no to disable this functionality or to yes to write
a cQASM file before and after that includes statistics as comments. The filename is built using the output_prefix
option, using suffix _debug_[in|out].cq. The option values stats, cqasm, and both are used for backward
compatibility with the write_qasm_files and write_report_files global options; for stats and both
a statistics report file is written with suffix _[in|out].report, and for qasm and both a cQASM file is written
(without stats in the comments) with suffix _[in|out].qasm.

resource_constraints

Must be yes or no, default yes. Whether to respect or ignore resource constraints when scheduling.

154 Chapter 1. How to read the documentation

OpenQL

scheduler_target

Must be one of asap, alap, or uniform, default alap. Which scheduling target is to be used; ASAP schedules
all gates as soon as possible, ALAP starts from the last gate and schedules all gates as late as possible, and uniform
tries to smoothen out the amount of parallelism throughout each kernel. Uniform scheduling is only supported without
resource constraints. ALAP is best for most simple quantum circuits, because the measurements at the end will be
done in parallel if possible, and state initialization is postponed as much as possible to reduce state lifetime.

commute_multi_qubit

Must be yes or no, default no. Whether to consider commutation rules for the CZ and CNOT quantum gates.

commute_single_qubit

Must be yes or no, default no. Whether to consider commutation rules for single-qubit X and Z rotations.

write_dot_graphs

Must be yes or no, default no. Whether to emit a graphviz dot graph representation of the schedule of the kernel.
The emitted file will use suffix _<kernel>.dot.

1.13 Supported resources

This section lists the scheduler resource types currently supported by OpenQL.

Roughly speaking, resources control whether two (or more) quantum gates may execute in parallel, and under what
conditions. The most obvious one is that two quantum gates operating on the same qubit physically cannot be executed
at the same time, but quantum chips typically have more subtle constraints as well. For example, execution of an X
gate on one qubit may require generation of a particular waveform by a waveform generator shared between a number
of qubits; in this case, it might be possible to do an X gate on another qubit in parallel, but not a Y gate.

Resources are of course used by the (resource-constrained) scheduler, but other passes may also make use of them.
For example, the mapper uses them in its heuristic routing algorithm to try to overlap swaps with the rest of the circuit
as much as possible, in such a way that resource constraints are not violated.

1.13.1 Resource specification

Resources are specified using the "resources" section of the platform configuration file. Two flavors are supported
for its contents: one for compatibility with older platform configuration files, and one extended structure. The extended
structure has the following syntax.

"resources": {
"architecture": <optional string, default "">,
"dnu": <optional list of strings, default []>,
"resources": {

"<name>": {
"type": "<type>",
"config": {

<optional configuration>

(continues on next page)

1.13. Supported resources 155

OpenQL

(continued from previous page)

}
}
...

}
}

The optional "architecture" key may be used to make shorthands for architecture- specific resources, normally
prefixed with "arch.<architecture>.". If it’s not specified or an empty string, the architecture is derived from
the "eqasm_compiler" key.

The optional "dnu" key may be used to specify a list of do-not-use resource types (experimental, deprecated, or
any other resource that’s considered unfit for “production” use) that you explicitly want to use, including the “dnu”
namespace they are defined in. Once specified, you’ll be able to use the resource type without the "dnu" namespace
element. For example, if you would include "dnu.whatever" in the list, the resource type "whatever" may be
used to add the resource.

The "resources" subkey specifies the actual resource list. This consists of a map from unique resource names
matching [a-zA-Z0-9_\-]+ to a resource configuration. The configuration object must have a "type" key,
which must identify a resource type that OpenQL knows about; the type names are listed in the sections below. The
"config" key is optional, and is used to pass type-specific configuration data to the resource. If not specified, an
empty JSON object will be passed to the resource instead.

If the "resources" subkey is not present, the old structure is used instead. This has the following, simpler form:

"resources": {
"<type>": {

<configuration>
},
...

}

This is limited to one resource per type alias. The names for the resources are inferred, and the architecture namespace
is in this case always based upon the contents of the "eqasm_compiler" key.

1.13.2 Instrument resource

Type names: Instrument.

This resource models an instrument or group of instruments that is needed to apply a certain kind of quantum gate,
with the constraint that the instrument is shared between a number of qubits/edges, and can only perform one function
at a time. That is, two gates that share an instrument can be parallelized if and only if they use the same instrument
function. By default, parallel gates requiring the same instrument also need to start at the same time and have the same
duration, but this can be disabled.

The instrument function is configurable for each particular gate based on one or more custom keys in the instruction
set definition of the platform configuration file. It’s also possible to specify that there is only a single function (i.e., all
gates requiring access to the instrument can be parallelized, but only if they start at the same time and have the same
duration), or to specify that all functions are mutually exclusive (in which case gates using the same instrument can
never be parallelized).

The instrument(s) affected by the gate, if any, are selected based on the qubit operands of the gate and upon whether
the gate matches a set of predicates. Like the instrument function selection, the predicates are based on custom keys
in the instruction definition in the platform configuration file. A different set of predicates can be provided based on
the number of qubit operands of the gate.

156 Chapter 1. How to read the documentation

OpenQL

Configuration structure

The shared instrument resource is configured using the following JSON structure.

{
"predicate": {

"<gate-key>": ["<value>", ...],
...

},
"predicate_1q": ...,
"predicate_2q": ...,
"predicate_nq": ...,
"function": [

"<gate-key>",
...

],
"allow_overlap": [true, false],
"instruments": [

{
"name": "<optional instrument name>",
"qubit": [<qubits>],
"edge": [<edges>],
"1q_qubit": [<qubits>],
"2q_qubit0": [<qubits>],
"2q_qubit1": [<qubits>],
"nq_qubit0": [<qubits>],
"nq_qubit1": [<qubits>],
"nq_qubitn": [<qubits>]

}
]

}

All sections except "instruments" are optional. Unrecognized sections throw an error.

Predicates

The predicate section must be a map of string-string or string-list(string) key-value pairs, representing (custom) keys
and values in the instruction set definition section for the incoming gate that must be matched. An incoming gate
matches the predicate if and only if:

• its instruction set definition object has values for all keys specified;

• these keys all map to strings; and

• the string values match (one of) the specified value(s) for each key.

For example, if an instruction definition looks like this:

"x": {
"duration": 40,
"type": "mw",
"instr": "x"

}

the following predicate configuration will match it:

1.13. Supported resources 157

OpenQL

"predicate": {
"type": "mw"

}

but will reject a gate defined like this:

"cnot": {
"duration": 80,
"type": "flux",
"instr": "cnot"

}

because its "type" is "flux".

Note: It will also silently reject gates which don’t have the "type" key, so beware of typos!

Should you want to match both types, but not any other type, you could do

"predicate": {
"type": ["mw", "flux"]

}

Different predicates can be specified for single-, two-, and more-than-two-qubit gates. Both the common predicate
and the size-specific predicate must match.

Instrument function selection

The function section can be one of three things:

• a list of gate keys as specified in the structure above, in which case the selected function is the combination of
the (string) values of these keys in the gate definition;

• an empty list or unspecified, in which case function matching is disabled, always allowing two gates to execute
in parallel (but still requiring them to start and end simultaneously); or

• the string "exclusive", in which case exclusive access is modelled, i.e. matching gates can never execute in
parallel.

For example, say that an x gate requires a different instrument function than an y gate, i.e. they cannot be done in
parallel, but multiple x gates on different qubits can be parallelized (idem for y), you might use:

"function": [
"instr"

]

for gates defined as follows:

"x": {
"duration": 40,
"type": "mw",
"instr": "x"

},
"y": {

"duration": 40,
"type": "mw",

(continues on next page)

158 Chapter 1. How to read the documentation

OpenQL

(continued from previous page)

"instr": "y"
}

In some cases, it is not necessary for parallel operations requiring the same instrument function to actually start at the
same time. For example, an instrument resource modelling qubit detuning would have two states, one indicating that
the qubit is detuned, and one indicating that it is not, but as long as it is in one of these states, it doesn’t matter when
gates requiring it start and end. This behavior can be specified with the "allow_overlap" option. If specified, it
must be a boolean, defaulting to false.

Note: It makes little sense to combine "allow_overlap" with an empty "function" section, because this
would disable all constraints on parallelism.

Instrument definition

A single instrument resource can define multiple independent instruments with the same behavior, distinguished by
which qubits or edges they’re connected to. This is done using the instruments section. It consists of a list of objects,
where each object represents an instrument. The contents of the object define its connectivity, by way of predicates on
the qubit operand list of the incoming gates.

• For single-qubit gates, the instrument is used if and only if the single qubit operand is in the "1q_qubit" or
"qubit" list.

• For two-qubit gates, the instrument is used if any of the following is true:

– either qubit is in the "qubit" list;

– the first qubit operand is in the "2q_qubit0" list;

– the second qubit operand is in the "2q_qubit1" list; or

– the edge index (from the topology section of the platform) corresponding to the qubit operand pair is in
the "edge" list.

• For three-or-more-qubit gates, the instrument is used if any of the following is true:

– any of the qubit operands is in the "qubit" list;

– the first qubit operand is in the "nq_qubit0" list;

– the second qubit operand is in the "nq_qubit1" list; or

– any of the remaining qubit operands are in the "nq_qubitn" list.

For example, an instrument defined as follows:

"instruments": [
{

"name": "qubit-2",
"1q_qubit": [2],
"edge": [1, 9]

}
]

will be used by single-qubit gates acting on qubit 2, and by two-qubit gates acting on edge 1 or 9 (as defined in the
topology section of the platform configuration file). Of course the gate also has to match the gate predicates defined
for this resource for it to be considered. When a gate matches all of the above, the instrument function as defined in

1.13. Supported resources 159

OpenQL

the function section will (need to) be reserved for this instrument for the duration of that gate, and thus the gate will
be postponed if a conflicting reservation already exists.

QWG example

In CC-light, single-qubit rotation gates (instructions with "type": "mw") are controlled by QWGs. Each QWG
controls a particular set of qubits. It can control multiple qubits at a time, but only when they perform the same gate
(configured using "cc_light_instr") and start at the same time. There are three QWGs, the first of which is
connected to qubits 0 and 1, the second one to qubits 2, 3, and 4, and the third to qubits 5 and 6.

This can be modelled with the following configuration:

{
"predicate": { "type": "mw" },
"function": ["cc_light_instr"],
"instruments": [

{
"name": "QWG0",
"qubit": [0, 1]

},
{

"name": "QWG1",
"qubit": [2, 3, 4]

},
{

"name": "QWG2",
"qubit": [5, 6]

}
]

}

Before resources were generalized, QWGs were modelled with a specific resource type. Its configuration structure
instead looked like this for the same thing:

{
"count": 3,
"connection_map": {

"0" : [0, 1],
"1" : [2, 3, 4],
"2" : [5, 6]

}
}

For backward compatibility, this structure is desugared to the complete structure when the instrument resource is
constructed using arch.cc_light.qwgs.

160 Chapter 1. How to read the documentation

OpenQL

Measurement unit example

In CC-light, single-qubit measurements (instructions with "type": "readout") are controlled by measurement
units. Each one controls a private set of qubits. A measurement unit can control multiple qubits at the same time, but
only when they start at the same time. There were two measurement units, the first of which being connected to qubits
0, 2, 4, 5, and 6, and the second to qubits 1 and 4.

This can be modelled with the following configuration:

{
"predicate": { "type": "readout" },
"instruments": [

{
"name": "MEAS0",
"qubit": [0, 2, 4, 5, 6]

},
{

"name": "MEAS1",
"qubit": [1, 4]

}
]

}

Before resources were generalized, this was modelled with a specific resource type. Its configuration structure instead
looked like this for the same thing:

{
"count": 2,
"connection_map": {

"0" : [0, 2, 3, 5, 6],
"1" : [1, 4]

}
}

For backward compatibility, this structure is desugared to the complete structure when the instrument resource is
constructed using arch.cc_light.meas_units.

Qubit detuning example

In CC-light, two-qubit flux gates ("type": "flux") for particular edges require a third qubit to be detuned (also
known as parked). This moves the qubit out of the way frequency-wise to prevent it from being affected by the flux
gate as well. However, doing so prevents single-qubit microwave quantum gates ("type": "mw") from using the
detuned qubit (and vice versa). Specifically:

• a two-qubit gate operating on qubits 0 and 2 detunes qubit 3;

• a two-qubit gate operating on qubits 0 and 3 detunes qubit 2;

• a two-qubit gate operating on qubits 1 and 3 detunes qubit 4;

• a two-qubit gate operating on qubits 1 and 4 detunes qubit 3;

• a two-qubit gate operating on qubits 3 and 5 detunes qubit 6; and

• a two-qubit gate operating on qubits 3 and 6 detunes qubit 5.

This can be modelled with the following configuration:

1.13. Supported resources 161

OpenQL

{
"predicate_1q": { "type": "mw" },
"predicate_2q": { "type": "flux" },
"function": ["type"],
"allow_overlap": true,
"instruments": [

{
"name": "qubit-2",
"1q_qubit": [2],
"edge": [1, 9]

},
{

"name": "qubit-3",
"1q_qubit": [3],
"edge": [0, 3, 8, 11]

},
{

"name": "qubit-4",
"1q_qubit": [4],
"edge": [2, 10]

},
{

"name": "qubit-5",
"1q_qubit": [5],
"edge": [6, 14]

},
{

"name": "qubit-6",
"1q_qubit": [6],
"edge": [5, 13]

}
]

}

Before resources were generalized, this was modelled with a specific resource type. Its configuration structure instead
looked like this for the same thing:

{
"count": 7,
"connection_map": {

"0": [3],
"1": [2],
"2": [4],
"3": [3],
"4": [],
"5": [6],
"6": [5],
"7": [],
"8": [3],
"9": [2],
"10": [4],
"11": [3],
"12": [],
"13": [6],
"14": [5],
"15": []

}
}

162 Chapter 1. How to read the documentation

OpenQL

To be specific, the connection map mapped each edge index to a list of qubits detuned by doing a flux gate on that
edge. For backward compatibility, this structure is desugared to the complete structure when the instrument resource
is constructed using arch.cc_light.detuned_qubits.

Mutably-exclusive edge example

The above qubit detuning has additional implications for two-qubit gates. Specifically, the following edges are mutably
exclusive:

• q0-q2 (edge 0 and 8) is mutually-exclusive with q1-q3 (edge 2 and 10);

• q0-q3 (edge 1 and 9) is mutually-exclusive with q1-q4 (edge 3 and 11);

• q2-q5 (edge 4 and 12) is mutually-exclusive with q3-q6 (edge 6 and 14); and

• q3-q5 (edge 5 and 13) is mutually-exclusive with q4-q6 (edge 7 and 15).

{
"predicate": { "type": "flux" },
"function": "exclusive",
"instruments": [

{
"name": "edge-0_2-1_3",
"edge": [0, 2, 8, 10]

},
{

"name": "edge-0_3-1_4",
"edge": [1, 3, 9, 11]

},
{

"name": "edge-2_5-3_6",
"edge": [4, 6, 12, 14]

},
{

"name": "edge-3_5-4_6",
"edge": [5, 7, 13, 15]

}
]

}

Before resources were generalized, this was modelled with a specific resource type. Its configuration structure instead
looked like this for the same thing:

{
"count": 16,
"connection_map": {

"0": [2, 10],
"1": [3, 11],
"2": [0, 8],
"3": [1, 9],
"4": [6, 14],
"5": [7, 15],
"6": [4, 12],
"7": [5, 13],
"8": [2, 10],
"9": [3, 11],
"10": [0, 8],
"11": [1, 9],

(continues on next page)

1.13. Supported resources 163

OpenQL

(continued from previous page)

"12": [6, 14],
"13": [7, 15],
"14": [4, 12],
"15": [5, 13]

}
}

Here, the keys and values in "connection_map" specify edge indices, where usage of the edge in key indicates
that the edge indices it maps to can no longer be used. Note that the i+8 edge is not in the second list because it maps
to the inversed-direction edge, which is already excluded by mutual exclusion of the qubits themselves. For backward
compatibility, this structure is desugared to the complete structure when the instrument resource is constructed using
arch.cc_light.edges.

1.13.3 Multi-core channel resource

Type names: InterCoreChannel.

This resource models inter-core communication with limited connectivity between cores. This is modelled as follows.

Each core has a limited number of channels, with which it can connect to other cores. The connectivity between the
channels of each core is assumed to be fully connected, but the number of channels per core can be adjusted. Gates
matching the predicate (if any) use one of the available core/channel pairs for each core that they use (communication)
qubits of. The core is of course determined by the qubit index, but the channel is undefined; the resource will use the
first available channel.

The resource is configured using the following structure.

{
"predicate": {

"<gate-key>": ["<value>", ...],
...

},
"predicate_1q": ...,
"predicate_2q": ...,
"predicate_nq": ...,
"inter_core_required": <boolean, default true>,
"communication_qubit_only": <boolean, default false>,
"num_channels": <number of channels per core, default 1>

}

Note that the number of cores and communication qubits per core are configured in the topology section of the platform
JSON configuration data. These settings are not repeated here.

The predicate section must be a map of string-string or string-list(string) key-value pairs, representing (custom) keys
and values in the instruction set definition section for the incoming gate that must be matched. An incoming gate
matches the predicate if and only if:

• its instruction set definition object has values for all keys specified;

• these keys all map to strings; and

• the string values match (one of) the specified value(s) for each key.

Different predicates can be specified for single-, two-, and more-than-two-qubit gates. Both the common predicate
and the size-specific predicate must match.

Furthermore, gates can be predicated based on whether they actually use qubits from multiple cores. This is controlled
by "inter_core_required". When set or unspecified, a gate must operate on qubits belonging to at least two

164 Chapter 1. How to read the documentation

OpenQL

different cores to match the predicate. Otherwise, this is not required. That is, a gate matching the other predicates
that uses only qubits from one core would still use channel resources for that core. This is mostly for compatibility
with the original channel resource, which didn’t check for this.

The "communication_qubit_only" flag controls whether all qubits of a gate use communication channel re-
sources, or whether only qubits marked as communication qubits are considered.

Finally, the "num_channels" key specifies how many independent channels each core has. The default and mini-
mum value is 1.

1.13.4 Qubit resource

Type names: Qubit or arch.cc_light.qubits.

This resource ensures that a qubit is only ever in use by one gate at a time.

Note: It assumes that a gate with a qubit operand actually uses this operand for its entire duration, so it may be overly
pessimistic.

This resource does not have any JSON configuration options. Historically it had a “count” key specifying the number
of qubits, but this is now taken from the platform’s qubit count. Any JSON options that are passed anyway are silently
ignored.

1.13.5 CC-light channels resource

Type names: arch.cc_light.channels.

Compatibility wrapper for the CC-light channels resource. This does exactly the same thing as the InterCoreChannel
resource, but accepts the following configuration structure:

{
"count": <number of channels>

}

This structure is converted to the following for use with the InterCoreChannel resource:

{
"predicate": { "type": "extern" },
"inter_core_required": false,
"communication_qubit_only": false,
"num_channels": <taken from "count">

}

1.13.6 CC-light detuned_qubits resource

Type names: arch.cc_light.detuned_qubits.

Compatibility wrapper for the CC-light detuned qubit resource. This is the same resource type as Instrument,
but accepting a different JSON configuration structure for backward compatibility. Refer to the documentation of the
Instrument resource for more information; everything is explained there.

1.13. Supported resources 165

OpenQL

1.13.7 CC-light edges resource

Type names: arch.cc_light.edges.

Compatibility wrapper for the CC-light edge resource. This is the same resource type as Instrument, but accepting
a different JSON configuration structure for backward compatibility. Refer to the documentation of the Instrument
resource for more information; everything is explained there.

1.13.8 CC-light meas_units resource

Type names: arch.cc_light.meas_units.

Compatibility wrapper for the CC-light measurement unit resource. This is the same resource type as Instrument,
but accepting a different JSON configuration structure for backward compatibility. Refer to the documentation of the
Instrument resource for more information; everything is explained there.

1.13.9 CC-light qwgs resource

Type names: arch.cc_light.qwgs.

Compatibility wrapper for the CC-light QWG resource. This is the same resource type as Instrument, but accepting
a different JSON configuration structure for backward compatibility. Refer to the documentation of the Instrument
resource for more information; everything is explained there.

1.14 Where to begin

So you want to contribute to OpenQL? Or perhaps you’re employed to help maintain it? Great!

OpenQL has grown to be quite a large project, so you may be feeling a bit overwhelmed. I know I was. I’m assuming
you already know what OpenQL is when you get here, otherwise please read through the user documentation first. But
after that, where to begin. . . ?

First of all, you should make sure that you’re able to build and test OpenQL on your own machine. So follow the Build
instructions, and if you run into any problems, ask an existing maintainer or open an issue.

If you’ll be touching the Python API, you’ll also want to follow the instructions for building the documentation locally;
there’s all kinds of generation magic from the API docstrings and documentation getters that might fall over if you
change the wrong thing, and documentation generation is not currently tested by CI.

Once done, you’ll want to get some sort of IDE configured, so you can click through the code. I use CLion; they have
free educational licenses for anyone with a university e-mail address, and it works okay.

Before changing anything, please read through the whole section on C++ coding conventions or CONTRIBUTING.md
(the content is the same). This section describes more than just what should be capitalized and whether braces go on
the same or the next line for consistency; it also goes over the general organization of the code, how to include things
to make sure everything works everywhere, and what rules need to be followed with regards to the documentation
dump_*() functions in order for the reStructuredText generators in docs/ to keep working.

Familiarize yourself with what’s available in the ql::utils namespace. This was added as a wrapper around the
C++ standard library to offer additional runtime safety, improve type naming consistency with the non-STL types
defined by OpenQL itself, and improve debugging. Depending on how used you are to C++ programming, you’ll
probably either love it, hate it, or both. But please, please use it anyway, to keep OpenQL’s codebase consistent.

In general, please think twice if you feel the need to type std:: or include a standard library header directly. Most
things are wrapped (although it’s virtually impossible to be complete).

166 Chapter 1. How to read the documentation

OpenQL

Avoid adding new native dependencies. If you really need to, the build system should be made smart enough for things
to work out of the box even if the dependency is not installed: your additions should automatically be disabled if they
can’t be built, but the rest of OpenQL can. You can do this via preprocessor macros, but be aware that you can only use
those in src! Files in include are public, and can thus be built with any preprocessor macro set when included by
user C++ code. You can look at the code for unitary decomposition, MIP-based placement, or the visualizer if you’re
not sure how to work with these constraints; those pieces of code all do this.

When you’ve added something, don’t forget to add yourself to CONTRIBUTORS.md!

These were just some general pointers I came up with on a whim, so this is most likely not complete. If you feel like
something is missing, feel free to add to this list!

1.15 Build instructions

This page documents how OpenQL and its documentation pages can be built and installed from scratch.

Note: It is very difficult to maintain these instructions, due to there being so many supported environments, and
due to externally-maintained dependencies. Therefore, please let the OpenQL maintainers know if you run into any
difficulties with these instructions. If you’re a new maintainer, update them accordingly via a PR, but be mindful that
something that works on your machine might not work on everyone’s machine!

1.15.1 Dependencies

The following packages are required to compile OpenQL from sources:

• a C++ compiler with C++11 support (Linux: gcc, MacOS: LLVM/clang, Windows: MSVC 2015 with update 3
or above)

• git

• flex > 2.6

• bison > 3.0

• cmake >= 3.0

• swig (Linux: >= 3.0.12, Windows: >= 4.0.0)

• Python 3.x + pip, with the following packages:

– plumbum

– wheel

– [Optional] pytest (for testing)

– [Optional] numpy (for testing)

– [Optional] libqasm (for testing)

– [Optional] sphinx==3.5.4 (for documentation generation)

– [Optional] sphinx-rtd-theme (for documentation generation)

– [Optional] m2r2 (for documentation generation)

• [Optional] Doxygen (for documentation generation)

• [Optional] Graphviz Dot utility (to convert graphs from dot to pdf, png etc)

1.15. Build instructions 167

https://github.com/QE-Lab/OpenQL/issues/new

OpenQL

• [Optional] XDot (to visualize generated graphs in dot format)

• [Optional] GLPK (if you want initial placement support)

• [Optional] make (required for documentation generation; other CMake backends can be used for everything
else)

• [Optional, MacOS only] XQuartz (only if you want to use the visualizer)

Note: The connection between Sphinx’ and SWIG’s autodoc functionalities is very iffy, but aside from tracking
everything manually or forking SWIG there is not much that can be done about it. Because of this, not all Sphinx
versions will build correctly, hence why the Sphinx version is pinned. Sphinx 4.x for example crashes on getting the
function signature of property getters/setters.

Windows-specific instructions

Note: The current maintainers of OpenQL all use either Linux or MacOS. While we’ve checked that these instructions
should work on a clean Windows install, things may go out of date. Please let us know if you encounter difficulties
with these instructions.

Dependencies can be installed with:

• win_flex_bison 2.5.20

• cmake 3.15.3

• swigwin 4.0.0

Make sure the above mentioned binaries are added to the system path.

For initial placement support, you’ll also need winglpk 4.6.5. But just adding this directory to the system path is not
enough for CMake to find it. Instead, the toplevel CMake script listens to the WINGLPK_ROOT_DIR environment
variable. Set that to the root directory of what’s in that zip file instead.

Alternatively, you can use Chocolatey to install packages. This is how CI currently does it. They just chain to
sourceforge downloads, though.

The actual build and install should be done with PowerShell, for which some modifications (may?) need to be made
first.

• Use Power Shell for installation

• Set execution policy by:

Set-ExecutionPolicy -ExecutionPolicy RemoteSigned

• Install PowerShell Community Extensions:

Install-Module -AllowClobber -Name Pscx -RequiredVersion 3.2.2

• MSVC 2015 should be added to the path by using the following command:

Invoke-BatchFile "C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\vcvarsall.bat
→˓" amd64

• but when you installed Microsoft Visual Studio Community Edition do:

168 Chapter 1. How to read the documentation

https://sourceforge.net/projects/winflexbison/files/win_flex_bison-2.5.20.zip/download
https://github.com/Kitware/CMake/releases/download/v3.15.3/cmake-3.15.3-win64-x64.msi
https://sourceforge.net/projects/swig/files/swigwin/swigwin-4.0.0/swigwin-4.0.0.zip/download
https://sourceforge.net/projects/winglpk/files/winglpk/GLPK-4.65/winglpk-4.65.zip/download

OpenQL

Invoke-BatchFile "C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\
→˓Auxiliary\Build\vcvarsall.bat" amd64

• To make your life easier, you can add this command to the profile you are using for power shell, avoiding the
need to manually run this command every time you open a power shell. You can see the path of this profile by
echo $PROFILE. Create/Edit this file to add the above command.

• Python.exe, win_flex.exe, win_bison.exe and swig.exe should be in the path of power shell. To test if swig.exe
is the path, run:

Get-Command swig

• To show the currently defined environment variables do:

Gci env:

• Make sure the following variables are defined:

– PYTHON_INCLUDE (should point to the directory containing Python.h)

– PYTHON_LIB (should point to the python library pythonXX.lib, where XX is for the python version
number)

• To set an environment variable in an expression use this syntax:

$env:EnvVariableName = "new-value"

MacOS-specific instructions

Note: These instructions have not been carefully vetted. If you run into issues, please let the maintainers know.

All dependencies can be installed using Homebrew and pip:

brew update
brew install llvm flex bison cmake swig python3 doxygen graphviz glpk xquartz
pip3 install wheel plumbum pytest numpy sphinx==3.5.4 sphinx-rtd-theme m2r2

Make sure the above mentioned binaries are added to the system path in front of /usr/bin, otherwise CMake finds
the default versions.

Linux-specific instructions

Honestly, if you’re already used to developing on Linux, and you’re using a self-respecting Linux distribution, you
should have no problems installing these dependencies. None of them are particularly special, so they should all be
available in your package manager.

If you’re for some reason using CentOS, you’ll need to use a devtoolset compiler, because the one shipped with
it is too old. Likewise, CentOS ships with cmake 2.9 installed in /usr/bin and depends on this; while cmake3 is
in the package manager, you actually need to call cmake3 instead of cmake, which setup.py is not smart enough
for. On CentOS or other batteries-not-included systems you might also have to compile some dependencies manually
(swig, flex, bison, and their dependencies m4 and possibly gettext), but they shouldn’t give you too much
drama. cmake has distro-agnostic binary distributions on github that are a only wget and tar xzv away. glpk
might be a bigger issue; I haven’t tried.

1.15. Build instructions 169

https://brew.sh

OpenQL

1.15.2 Obtaining OpenQL

OpenQL sources for each release can be downloaded from github releases as .zip or .tar.gz archive. OpenQL can also
be cloned by:

git clone https://github.com/QE-Lab/OpenQL.git --recursive

Note the --recursive: the repository depends on various submodules. If you forgot the --recursive, you can
get/synchronize them later with git submodule update --init --recursive.

1.15.3 Building the qutechopenql Python package

Running the following command in a terminal/Power Shell from the root of the OpenQL repository should install the
qutechopenql package:

pip install -v .

Or in editable mode by the command:

pip install -v -e .

Editable mode has the advantage that you’ll get incremental compilation if you ever change OpenQL’s C++ files, but
it’s a bit more fragile in that things will break if you move the OpenQL repository around later. Specifically, editable
mode just installs an absolute path link to your clone of the OpenQL repository, so if you move it, the link breaks.
You’d have to remember to uninstall if you ever end up moving it.

Note: Depending on your system configuration, you may need to use pip3, python -m pip or python3 -m
pip instead of pip. You may also need to add --user to the flags or prefix sudo. An exhaustive list of which
is needed when is out of scope here; instead, just look for pip usage instructions for your particular operating system
online. This works the same for any other Python package.

Warning: NEVER install with python3 setup.py install (or similar) directly! This always leads to all
kinds of confusion, because setuptools does not inform pip that the package is installed, allowing pip to go
out of sync.

Note: The setup.py script (as invoked by pip in the above commands, again, do not invoke it directly!) listens to
a number of environment variables to configure the installation and the compilation process. The most important ones
are:

• OPENQL_ENABLE_INITIAL_PLACEMENT: if defined (value doesn’t metter), initial placement support will
be enabled.

• OPENQL_DISABLE_UNITARY: if defined (value doesn’t matter), unitary decomposition is disabled. This
speeds up compile time if you don’t need it.

• NPROCS: sets the number of parallel processes to use when compiling (must be a number if defined). Without
this, it won’t multithread, so it’ll be much slower.

In bash-like terminals, you can just put them in front of the pip command like so: NPROCS=10 pip In
Powershell, you can use $env:NPROCS = '10' in a command preceding the pip command.

170 Chapter 1. How to read the documentation

https://github.com/QE-Lab/OpenQL/releases

OpenQL

Note: You may find that CMake notes that some packages it’s looking for are missing. This is fine: some things are
only needed for optional components (which will automatically disable themselves when dependencies are missing)
and some things are only quality-of-life things, for example for generating backtraces for the exception messages. As
long as the tests pass, the core OpenQL components should all work.

Once installed, and assuming you have the requisite optional dependencies installed, you can run the test suite (still
from the root of the OpenQL repository) using

:: pytest -v

Note: If pytest is unrecognized, you should be able to use python -m pytest or python3 -m pytest
instead (making sure to use the same Python version that the pip you installed the package with corresponds to).

Conda vs pip

A conda recipe also exists in the repository. However, it is in a state of disuse, as conda’s ridiculous NP-complete
dependency solver implementation is too heavy for CI (it can take literal hours), and none of the maintainers use it.
Your mileage may vary.

1.15.4 Building the C++ tests and programs

Existing tests and programs can be compiled by the following instructions. You can use any existing example as a
starting point for your own programs, but refer to examples/cpp-standalone-example for the build system.

The tests are run with the tests directory as the working directory, so they can find their JSON files. The results end
up in tests/test_output.

Linux/MacOS

Existing tests and examples can be compiled and run using the following commands:

mkdir cbuild
cd cbuild
cmake .. -DOPENQL_BUILD_TESTS=ON # configure the build
make # actually build OpenQL and the tests
make test # run the tests

Windows

Existing tests and examples can be compiled and run using the following commands:

mkdir cbuild
cd cbuild
cmake .. -DOPENQL_BUILD_TESTS=ON -DBUILD_SHARED_LIBS=OFF # configure the build
cmake --build . # actually build OpenQL and the tests
cmake --build . --target RUN_TESTS # run the tests

Note: -DBUILD_SHARED_LIBS=OFF is needed on Windows only because the executables can’t find the OpenQL
DLL in the build tree that MSVC generates, and static linking works around that. It works just fine when you manually

1.15. Build instructions 171

OpenQL

place the DLL in the same directory as the test executables though, so this is just a limitation of the current build system
for the tests.

Other CMake flags

CMake accepts a number of flags in addition to the -DOPENQL_BUILD_TESTS=ON flag used above:

• -DWITH_INITIAL_PLACEMENT=ON: enables initial placement.

• -DWITH_UNITARY_DECOMPOSITION=OFF: disables unitary composition (vastly speeds up compile time if
you don’t need it).

• -DCMAKE_BUILD_TYPE=Debug: builds in debug rather than release mode (less optimizations, more debug
symbols).

• -DBUILD_SHARED_LIBS=OFF: build static libraries rather than dynamic ones. Note that static libraries are
not nearly as well tested, but they should work if you need them.

1.15.5 Building the documentation

If you want, you can build the ReadTheDocs and doxygen documentation locally for your particular version of
OpenQL. Assuming you have installed the required dependencies to do so, the procedure is as follows.

first build/install the qutechopenql Python package!
cd docs
rm -rf doxygen # optional: ensures all doxygen pages are rebuilt
make clean # optional: ensures all Sphinx pages are rebuilt
make html

The main page for the documentation will be generated at docs/_build/html/index.html.

Note: The Doxygen pages are never automatically rebuilt, as there is no dependency analysis here. You will always
need to remove the doxygen output directory manually before calling make html to trigger a rebuild.

1.16 Build automation

OpenQL employs continuous integration based on GitHub Actions, to ensure that new features or modifications actu-
ally work on all supported systems. The files to this end are in the .github directory of the repository. Furthermore,
ReadTheDocs can build and publish documentation for OpenQL automatically, for which the files are in the docs
folder (specifically, it uses the docs/requirements-docs.txt for a pip package dependency list and then just
runs the makefile in docs.

172 Chapter 1. How to read the documentation

OpenQL

1.16.1 Integration tests

The integration tests are run when you push to a branch for which a pull request is open, or when develop changes.
The suite runs the following things:

• the Python test suite;

• the ctest suite (tests and examples); and

• the standalone C++ test, built completely out of context.

The former two are run on ubuntu-latest, macos-latest, and windows-latest for all active Python
versions (currently 3.6 through 3.9). The latter is only run on ubuntu-latest, as it doesn’t check much except
inclusion of the project via CMake.

Note: To test an incomplete branch that you’re still working on, please open a draft pull request.

1.16.2 Release automation

Release artifact generation triggers on a push to a branch that starts with release_ (used for testing) or when a new
release is made via GitHub and/or a tag is pushed.

Warning: Please don’t do any of these things until you have read the Release procedure!

1.16.3 ReadTheDocs automation

TODO: Razvan, anything noteworthy here?

1.17 Release procedure

Most of the release process is managed by GitHub Actions. If you follow the procedure below, it will automatically
test and build all wheels and conda packages for all platform, and publish them to PyPI and conda assuming the secrets
are configured correctly.

• Make a branch with a name starting with “release” based upon the commit that is to be released. For example,
release-0.0.1, but the suffix doesn’t matter.

• Change the version in include/ql/version.h (this is the only functional place where the version is hard-
coded) and change any other files where applicable (changelog, etc) and update CHANGELOG.md accordingly,
then commit and make a PR for it.

• CI will now run not only the test workflow, but also the assets workflow. The assets workflow builds the wheels
and conda packages, but publishes them to the GitHub Actions build artifacts only. You can then test these
yourself if you have reason to believe that something might be wrong with them that CI might not catch. To find
them, go to Actions -> Assets workflow -> click the run for your branch -> Artifacts.

• Always delete the artifacts of the assets runs when you’re done with them or don’t need them! OpenQL’s binaries
are quite big, so if you don’t do this, GitHub will soon start rejecting new artifacts due to storage quota.

• If the test or assets workflows fail, fix it before merging the PR (of course).

• Once CI is green, merge the PR into develop if there are any changes. If no changes were needed, just delete
the branch to clean up.

1.17. Release procedure 173

OpenQL

• If needed, also merge to master.

• Draft a new release through the GitHub interface. Set the “tag version” to the same version you put in
include/ql/version.h, the title to “Release version: name“, and write release notes in the body.
The release notes should include at least:

– a summary of what has changed, what is new, and what is incompatible with the previous version;

– if there are incompatibilities, what the user can do for mitigation; and

– what has been deprecated and may be removed in a later version.

In principle, these things apply only to the public API. For releases that don’t go to master, check the “prerelease”
box, so it won’t show up as the latest release.

• CI will run the assets workflow again, now with the new version string baked into the wheels and packages.
When done, these wheels and packages are automatically added to the GitHub release, and if the secrets/API
keys for PyPI and conda are correct, CI will publish them there.

• Remove the temporary release-* branch. Users can find particular releases via the tag that GitHub automat-
ically added when you drafted the release.

1.18 C++ coding conventions

In order to maintain the code homogeneous and consistent, all contibutors are invited to follow this coding convention.

NOTE: at the time of writing, not all of OpenQL has been converted to this code style completely yet.

In general, consistency is considered to be more important than any of these rules. If a significant piece of code violates
a rule consistently, either change the entire piece of code to conform, or make your changes in the same style as the
original code.

1.18.1 File and directory organization

C++ header files should be named .h. Header files private to OpenQL go in the src directory, preferably in a
detail subdirectory. Header files that a user needs to access as well (the vast majority) go in include.

All definitions must go into source files; header files should only declare things. Therefore, almost all header files
need a corresponding source file. This file must have the same name and path relative to the src/include directory as
the corresponding header file.

All filenames are lowercase, separated by _ when composed of multiple words.

The filename and directory structure (loosely) follows the namespace structure of OpenQL and vice versa. When a
namespace is only comprised of only a single file, the filename will be the name of the namespace, and the directory
it’s placed in is the name of the parent namespace (and so on). When a namespace consists of multiple files, the
entire namespace path is represented as directories, and the contained files should be named after the (main) class (in
lower_case) or functionality that they provide.

Subdirectories in src/ql may include a tests directory. Any *.cc file in such a directory is automatically
interpreted as a unit test file by the build system. Note however that when you add or remove a test, you must
manually regenerate the CMake project. A unit test simply consists of a C++ program with a main(), that must
return zero on success or nonzero on failure. Unit tests are run using the toplevel tests directory as the working
directory.

174 Chapter 1. How to read the documentation

OpenQL

1.18.2 Naming conventions

To be consistent with especially Python (since we share an API between it and C++):

• class and type names are written in TitleCase.

• variables, fields, and namespaces (compare to modules) are written in snake_case.

• constants and macros are written in UPPER_CASE.

This is already the standard in most popular languages (aside from some deciding to use mixedCase in places).
C++ is the only serious language that remains that maintains sort of its own style, but it’s also the one largest amount
of conflicting styles. Therefore, it makes more sense to just stick to Python. The only annoying conflict is that the
standard library types are lowercase.

When naming things, try to be explicit and precise, but only within the context of the current namespace. For example,
if you have a class representing a red apple, and you place it in namespace apple, call the class Red instead of
RedApple. This saves you typing within the apple namespace, doesn’t cost someone outside your namespace much
extra typing for occasional apple usage (apple::Red isn’t much longer than RedApple after all), and someone
using lots of apples within some scope can just do using namespace apple locally to save more typing.

When you use polymorphism for a group of objects, the base class is typically called Base. Continuing with the apple
example, the apple namespace may have a class Base declared in base.h, Red : public Base in red.h,
and Green : public Base in green.h. Using Base instead of Apple avoids annoying constructions like
apple::Apple.

Avoid abbreviations of “words” within a name, except maybe for very local variables like loop iterators. A little typing
overhead while writing the code saves a lot of overhead when someone else later has to read and understand your code.
However, typedefs (using the using keyword, C-style typedefs are comparatively hard to read) are encouraged, to
remove parts of names or namespace paths that are obvious within context.

1.18.3 Namespaces

Since OpenQL may be used as a C++ library, it’s common courtesy not to pollute the global namespace with stuff.
Imagine, for instance, if OpenQL would define the type Bit to represent a classical bit in the global namespace, and
someone using the library from C++ also includes a bit manipulation library that happens to also define Bit; this
would be a naming conflict that’s impossible to resolve for the user. Therefore, everything defined by OpenQL should
be within the ql namespace, and all preprocessor macros (which can’t be namespaced) should start with QL_.

Furthermore, nothing except the main C++-style openql header in include should define anything directly in ql.
This namespace is reserved for the API layer that the user is expected to access, and must thus remain as consistent
from version to version as possible. The main header currently does a using namespace api to pull the contents
of ql::api into ql, but if internal changes are made to OpenQL again later, this translation may become more
complex.

OpenQL has a well-defined namespace tree used to structure its components and keep things disjoint. Roughly speak-
ing, the namespaces serve as library for dependent namespaces, although some dependency cycles still remain at this
abstraction level. The ql subnamespaces, roughly ordered by dependencies, are:

• utils: extensions to (standard) libraries, wrappers, etc. not specific to OpenQL or compilers in any way.

• plat: the platform tree. Contains most of the data structures needed to describe a quantum platform. This
should be light on actual functionality, such that it might be generated by tree-gen at some point.

• ir: intermediate representation. Contains most of the data structures needed to represent a quantum program
as it’s being compiled. This should be light on actual functionality, such that it might be generated by tree-gen
at some point.

• com: common operations. This contains all OpenQL/compiler-specific code operating on the platform and IR
trees that is reusable for various passes. For example DFG or CFG construction might live here.

1.18. C++ coding conventions 175

OpenQL

• pmgr: pass management. This contains all the logic that manages the compilation process.

• pmgr::pass_types: defines the abstract base classes for the compiler passes.

• pass: pass implementations. This contains a subtree of namespaces that eventually define the architecture-
agnostic compiler passes of OpenQL. This tree should correspond exactly to the namespace paths in the path
types as the pass factory knows them. The first namespace level is standardized as follows:

– pre: passes that perform pre-processing of the platform tree. (NOTE: at the time of writing these don’t
exist yet, and pass management isn’t quite ready for it yet due to issues with backward compatibility of the
API)

– io: I/O passes that load the IR from a file or save (parts of the IR) to a file without significant transfor-
mation. Mostly cQASM, but would also include conversion of the IR to different formats (OpenQASM?
QuantumSim?).

– ana: passes that leave the IR and platform as is (save for annotations), and only analyze the content of
the platform/IR. For example statistics reporting, visualization, error checking, consistency checking for
debugging, etc.

– dec: passes that decompose code (instructions, gates, etc) to more primitive components or otherwise
lower algorithm abstraction level. Should includes of course gate decomposition passes (once that func-
tionality is pulled out of Kernel), but something like reduction of structured control flow to only labels and
goto’s would also go here.

– map passes that map qubits or classical storage elements to something closer to hardware. Right now
that would be “the mapper,” but would also include a hypothetical pass that automatically applies some
error correction code to the user-specified algorithm, mapping variables to classical registers and memory,
reduction to single-static-assignment form, etc.

– opt: optimization passes, i.e. passes that do not lower IR abstraction level, but instead transmute the IR
to a “better” equivalent representation.

– sch passes that shuffle instructions around and add timing information.

– gen passes that internally convert the common IR into their own IR to reduce it further, to eventually
generate architecture-specific assembly or machine code. These should only ever be part of arch.

– misc: any passes that don’t fit in the above categories, for example a Python pass wrapper if we ever
make one, which could logically be any kind of pass.

– dnu: “Do Not Use:” code exists only for compatibility purposes, only works in very particular cases, is
generally unfinished, or is so old that we’re not sure if it even works anymore. This receives special treat-
ment in the pass factory: passes prefixed with dnumust be explicitly enabled in the compiler configuration
file.

* io..misc: the other categories reappear as namespaces within dnu.

• rmgr: resource management. This contains the logic that functionally describes the scheduling resources of a
platform, used to define for example instrument constraints.

• pmgr::resource_types: defines the abstract base classes for the scheduling resources.

• resource: defines the architecture-agnostic scheduling resources built into OpenQL.

• resource::dnu: similar to pass::dnu, defunct or work-in-progress resources should be placed in here.

• arch::<name>: the place for all architecture-specific stuff. Specifically, this may include com, pass, and
resource sub-namespaces that provide architecture-specific additions or overrides for the respective ql sub-
namespaces.

• api: this namespace contains all user-facing API wrappers.

176 Chapter 1. How to read the documentation

OpenQL

Private functionality for a logical piece of code within OpenQL (usually a pass) should go into a subnamespace named
detail. This namespace should only have files in src, and as such, the non-detail parts of the code should only
refer to it from .cc files (so NOT from the include header files). This enforces sectioning off local implementation
details from the rest of the OpenQL code, preventing excessive compilation time by keeping the (public) header files
as lean as possible.

Within a local namespace, use whatever you want (using namespace etc) as you see fit, although more selective
inclusions and abbreviations using namespace x = ... and using T = ... is preferred.

As for code style, please stick to the following.

// Namespaces do not receive indentation, because then everything would be
// indented. But the closing brace must be clearly marked as such (using the
// depicted style) to compensate.
namespace ql {

... // namespace contents are not indented...

} // namespace ql

// "using namespace" is allowed only in .cc files, private header files, or
// in local scopes. If you're working deep inside the namespace tree, it is
// sometimes useful to pull another namespace into it, which is fine, but
// it's preferred to include things selectively with `using x = y` or to
// abbreviate namespaces if needed using `namespace x = a::b::c`.

1.18.4 Header files and #include syntax

Some general rules for #include directive consistency.

• Always use #include "ql/..." to refer to public header files of OpenQL. That is, use the "" syntax rather
than the <> syntax, and use the full path from ql onward.

• Usage of relative paths is allowed only to refer to private/detail header files.

• The first directive in a .cc file must be inclusion of its respective header file. The next line should be blank.
Any header files needed for the .cc file that are not needed for the corresponding .h file follow after this blank
line.

• Try to keep #include directives ordered as follows:

– system header files (standard library, etc);

– OpenQL’s dependencies from the deps folder (lemon, libqasm, etc); and

– include OpenQL’s own headers in the same order that the namespaces are listed in the previous section.

Sometimes you may end up with an include dependency loop. For example, the platform structure includes a reference
to an architecture structure, but the architecture-specific logic certainly makes use of the platform structure. The typical
symptom is an error message that some type has not been declared yet, with a long include chain at the top. This can
usually be bypassed by making a declarations.h file for the namespace for which forward references are needed.
This header file should make forward declarations for the types defined in the namespace (just class X; etc.) and
declare any pointer/reference typedefs needed for them. Note that the files that actually define the classes should
always include this file as well, so the compiler will actually warn you when there are inconsistencies!

1.18. C++ coding conventions 177

OpenQL

1.18.5 “Runtime” documentation and dump() functions

In order to aid the synchronization of the user-facing documentation and the internal codebase, and to make it easier
for users to access the documentation, a good portion of the documentation is placed in the OpenQL codebase itself
as strings. These strings can then be queried via the API by the user directly, or by the ReadTheDocs/Sphinx conf.py
script to generate online documentation pages from them. Consistency is key for making this all work smoothly:
inconsistensies are not only ugly when reading the documentation (say for instance that one person uses regular
English interpunction while the other uses a more comment-like lack of interpunction and capitalization), but may
also easily break the generators. After all, the output of these documentation functions is fed through some Python
magic to Sphinx’ reStructuredText parser.

In order to make the documentation readable from within Python as well, indentation is used for sectioning, rather
than RST section headers. This means that each documentation printing function needs to be aware of the current
indentation level; simply returning a string is not enough. To solve this and a few other problems all functions that
print documentation-like information to the user must have the following signature:

dump_*(std::ostream &os = std::cout, const utils::Str &line_prefix = "")

The following contract must be adhered to:

• at least one line must be written to os;

• all lines must start with line_prefix and end with "\n";

• the <iomanip> stream state of os must not be mangled;

• the stream should be flushed at the end (either via std::endl or an explicit call to flush()).

To open a subsection in the output stream (for a recursive call to a dump function, for instance):

• there must be at least one blank line (or the start of the input) before the section header;

• the section header must have the same indentation level as the parent (so whatever is in line_prefix);

• the header must be exactly of the form <line_prefix>* <text> *\n; and

• the body of the section must be indented by two additional spaces.

Do NOT use RST or markdown headers in the section bodies; use only indented sections as described above. Violating
this rule or any of the other rules above will likely break the converter for the RTD pages.

The text inside the documentation strings is interpreted as markdown, converted to reStructuredText for
Sphinx/ReadTheDocs via m2r2. Markdown is used rather than RST because it’s way more pleasing to read raw,
for example when dumped from within an interactive Python interpreter. m2r2 passes most RST tags straight through
however, so you still need to be careful not to accidentally put something that looks like RST in a docstring.

In addition m2r2‘s logic, the following conversions are made:

• section headers are detected and converted to appropriate RST header levels;

• section bodies are un-indented; and

• NOTE: or WARNING: at the start of a markdown paragraph (blank line before and after) is converted to an
RST .. note::/.. warning:: block. The first letter of the sentence (fragment) following the header is
automatically capitalized, so it can be lowercase in the raw output while still being appropriately capitalized on
ReadTheDocs.

To aid writing these long documentation strings inside C++, two functions are available in utils/str.h:

• dump_str: useful for writing long dumpable strings by means of manually-wrapped raw strings. For example:

178 Chapter 1. How to read the documentation

OpenQL

utils::dump_str(os, line_prefix, R"(
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vestibulum at
lacus porttitor mi consectetur ultrices. Aenean malesuada tristique nisl,
eu ultrices enim sodales eu. Cras sed nulla enim. Nunc pretium pretium
tortor, ut cursus nulla commodo sit amet.
)");

dump_str ensures that the C++ indentation level is stripped from each line of the raw string, and that
line_prefix is inserted before each line.

• wrap_str: similar to the above, but assumes that the input is not wrapped yet. This is more useful for shorter
pieces of text where you don’t want to be bothered by wrapping manually, or generated text where doing so
consistently would otherwise be impossible. However, while the wrapper tries to be smart about maintaining in-
dentation for multiple paragraphs in its input, it is not infallible. Hence, for long pieces of relatively complicated
documentation code (that includes code blocks etc.) dump_str is more helpful.

1.18.6 Utility types and functions

The ql::utils namespace provides a bunch of typedefs and wrappers for C++ standard library stuff, modified to
improve safety, reduce undefined behavior, simplify stuff where OpenQL doesn’t need the full expressive power of
the standard library, improve consistency in terms of naming conventions, or just to reduce typing. In cc files there is
sometimes a using namespace utils to reduce typing further, but never do this in header files! You should use
types and functions from here as much as possible. Here are some important ones.

• From utils/num.h:

– Bool for booleans;

– Byte for (unsigned) bytes;

– UInt for unsigned integers (maps to 64-bit unsigned);

– Int for signed integers (maps to 64-bit signed);

– Real for real numbers (maps to double);

– Complex for complex numbers;

– MAX as an “undefined” value for Int or UInt;

– PI for pi;

– EU for Euler’s constant;

– IM for the imaginary unit;

– a bunch of common math subroutines from std are copied into utils, so you don’t need to type std::.

• From utils/str.h:

– Str for strings (maps to std::string);

– StrStrm for string streams (maps to std::ostringstream);

– to_string() for converting things to string (this uses the << stream operator, so it can be overloaded,
and IS overloaded for the wrapped container types for instance);

– parse_uint(), parse_int(), and parse_real() for parsing numbers (these throw better excep-
tions than the STL counterparts);

– a couple additional string utility functions are defined here.

• From utils/json.h:

1.18. C++ coding conventions 179

OpenQL

– Json for JSON values (from nlohmann::json);

– load_json() for loading JSON files with better contextual errors and allowance for // comments.

• From utils/pair.h:

– Pair<A, B> for std::pair; includes stream << overload.

• From utils/vec.h:

– Vec<T> for a wrapper of std::vector<T> with additional safety.

• From utils/list.h:

– List<T> for a wrapper of std::list<T> with additional safety.

• From utils/map.h:

– Map<K, V> for a wrapper of std::map<K, V> with additional safety.

• From utils/opt.h:

– Opt<V> for a more-or-less equivalent of std::optional, implemented using a smart pointer. Primar-
ily intended for places where you need to own a value but can’t construct it immediately (replacing the
“virgin constructor” antipattern).

• From utils/tree.h:

– Maybe<T> for an optional tree node reference;

– One<T> for a mandatory tree node reference;

– Any<T> for zero or more tree node references;

– Many<T> for one or more tree node references;

– OptLink<T> for an optional link to a tree node elsewhere in a tree;

– Link<T> for a mandatory link to a tree node elsewhere in a tree;

– make<T>() for constructing tree nodes.

• From utils/exception.h:

– Exception for exceptions that are unlikely to be caught. This exception automatically adds contextual
information, such as a stack trace.

• From utils/logger.h:

– macros for logging to stdout; these are preferred over streaming to std::cout directly.

• From utils/filesystem.h:

– OutFile for writing files (wraps std::ofstream with automatic error-checking, and also ensures
directories are created recursively if the path to the file doesn’t exist yet);

– InFile for reading files (wraps std::ifstream with automatic error-checking);

– a couple additional FS utilities.

180 Chapter 1. How to read the documentation

OpenQL

1.18.7 Indentation

Use four spaces. NEVER tabs. Avoid trailing whitespace.

1.18.8 Comments

// A good normal comments consists of two slashes at the front of each line,
// followed by a single space, followed by English text in the form of a
// paragraph, preferably manually wrapped at column 80.

// Comment blocks of code like this.
statement;
another statement;

// The next block of code starts after an empty line. The first two statements
// that follow relate to this comment, the third does not.
statement one;
if (condition) {

statement two;
}

statement three;

// In indented blocks, it works like this.

// Comment A
belongs to A;
belongs to A;
if (condition) {

belongs to A;

// Comment B
belongs to B

}
belongs to A;

// Avoid comments at the end of a line. This almost always just becomes way too
// wide to read easily.

// Avoid /*...*/ for descriptive comments. You can use them to disable code,
// but #if 0 blocks are preferable because you can nest those.

// Functions, variables, classes, etc. should use javadoc-style comments.
// These comments may then be used by Doxygen and IDEs to extract
// documentation. You can use markdown and Doxygen @directives to make the docs
// prettier if you like. Attach the docstring to the *definition* of the object
// rather than its declaration in a header file; if you like, you can add
// regular // comments with a brief description of the function or whatever in
// the header file for people trying to understand the interface of your class
// or module from a birds' eye perspective.
/**
* Brief documentation.

*
* Extended documentation automatically follows after the first sentence.

*/

(continues on next page)

1.18. C++ coding conventions 181

OpenQL

(continued from previous page)

void some_function();

// When you want to section up your code, you can use breaks like this:

//===
// START OF SOME SECTION
//===

// Don't use "/*********" etc., as this may be confused with docstrings by some
// tools.

1.18.9 Macros and other preprocessor directives

// Regardless of code indentation, preprocessor directives are not indented by
// convention.
void test() {

...
#if WITH_SOME_FEATURE

...
#endif

...
}

// Feature flags are controlled by CMake through options passed to the user.
// Refer to the CMakeLists.txt files for more information; it should be fairly
// obvious.

// Feature switches such as the above must only ever be used in .cc files,
// never in headers. The feature flags may get out of sync otherwise (the flags
// may differ between when the OpenQL library was compiled and when the user is
// linking against it).

// Header file guards are done using
#pragma once
// rather than #ifndef etc. This avoids weird problems caused by copypaste
// mistakes, when the same preprocessor definition is used for multiple
// headers. Since OpenQL already requires C++11, you'll be hard-pressed finding
// a compiler that doesn't support that pragma but could compile OpenQL
// otherwise.

// Local header files use "" in their include directives. Only external
// libraries and the standard library uses <>.
#include <vector>
#include <lemon/...>
#include "openql.h"

182 Chapter 1. How to read the documentation

OpenQL

1.18.10 If statements

// If statements look like this.
if (condition) {

...
} else if (condition) {

...
} else {

...
}

// Very short statements can go on the same line without braces, but only if
// there is no else block and it's easier to read than writing out the block.
// Typically this is only the case for if-break, if-return, or if-throw.
if (condition) break;

// Do NOT use Yoda conditions. It's harder to read, and unless everything is
// written that way it's inconsistent.

// When the condition becomes too long to be readable, indent as shown:
if (

(x == "a")
|| (x == "b")
|| (x == "c")

) {
...

}

1.18.11 Switch statements

// Switch statements:
// - Indent case labels.
// - Explicitly mark fallthrough with a comment when intended.
// - Use blocks only if needed (i.e. for variable declarations).
switch (condition) {

case a:
...
break;

case b:
case c: {

...
break;

}
case d:

...
// fallthrough

case e:
...
break;

default:
break;

}

1.18. C++ coding conventions 183

OpenQL

1.18.12 Loops

// Normal for loops:
// - Declare the loop variable in the loop if it's a local thing.
// - Use size_t for loops instead of int whenever you're using the loop
// variable as index to avoid signed-unsigned comparison warnings.
// - i++ is preferential over ++i unless you have a good reason to believe
// the additional sequence point will actually cause harm. It's C++ after
// all, not ++C.
for (size_t i = 0; i < 10; i++) {

...
}

// Iterating:
// - Use iterating loops whenever possible.
// - Use const auto &x whenever possible. If you intend to mutate the
// elements, drop the const; if you don't intend to mutate but get
// errors, drop the const and &.
for (const auto &element : sequence) {

...
}

// While loops:
while (condition) {

...
}

// Do-while loops (if you need them...):
do {

...
} while (condition);

// ALWAYS open a block (this goes for all statements except exceptional
// if statements). In rare cases (when the loop is just annoying boilerplate)
// the block can go in a single line as follows:
for (auto &el : sequence) { el = 0; }

1.18.13 Enumerations

// Enumerations look like this:
/**
* Documentation for the complete enumeration.

*/
enum class Enum {

/**
* Documentation for option A.

*/
OPTION_A,

/**
* Documentation for option B.

*/
OPTION_B,

(continues on next page)

184 Chapter 1. How to read the documentation

OpenQL

(continued from previous page)

/**
* Documentation for option C.

*/
OPTION_C

};

// Using the C++ "enum class" construct, you can use short names for your enum
// options, as they will be namespaced to the enum;
Enum::OPTION_A

1.18.14 Typedefs

// Use "using" rather than "typedef". The syntax is just more clear.
using Hello = std::vector<int>*;

// instead of "typedef std::vector<int> *Hello"

1.18.15 Classes

// Class definitions are indented and whitespaced as follows:
class AClass {
public:

...
}

// Classes in header files should not contain any function definitions,
// regardless of triviality (except when templated, then it can't be avoided).
// This keeps compilation times down, the lack of inlining makes stack traces
// less magical, and honestly, I doubt you'll notice the performance penalty of
// the lack of inlining in practice (and there's always LTO nowadays).

// Avoid "virgin constructors": the constructor of a class should also
// initialize that class. C++ utilizes the RAII principle (resource acquisition
// is initialization): if you have a class instance, you should be able to
// assume it has already been initialized and that you can use it. Virgin
// constructors combined with an init method nuke this principle, making it
// relatively easy to accidentally get undefined behavior by using an object
// before initializing it. If you're faced with spaghetti in the member
// initialization part of a constructor (the part between the : and the
// function body) because members don't have a virgin constructor, wrap them in
// utils::Opt or utils::Ptr and call emplace() on them instead of what would
// have been init(); this lets you do everything that you would be able to do
// with the virgin constructor method, but without breaking RAII and with
// runtime detection of use-before-init (since dereferencing an empty Opt or
// Ptr will throw an exception).

// Constructions where you think you need this should be avoided. If you really
// need it anyway, use ql::Opt<T> instead of T directly. You can then use
// emplace(...) to initialize the contained object of type T after the fact
// (or you can just assign it as you otherwise would), and access the fields
// and members of T using -> instead of . (so, as if it were a pointer). The

(continues on next page)

1.18. C++ coding conventions 185

OpenQL

(continued from previous page)

// practical upshot of this is that Opt will throw an exception your way if
// you try to access it while it's not initialized yet, whereas with the virgin
// constructor method OpenQL would just silently truck along to spit out
// garbage that may or may not look like what you were expecting.

// When using inheritance, the toplevel ancestor class must have a virtual
// destructor. If you don't have anything useful to put there, you can tell the
// compiler to make a default one. If you don't do this, class destruction
// won't work right, and you'll get undefined behavior. It is sufficient to
// only give the toplevel class such a virtual destructor; all descendents get
// virtual destructors automatically because of it.
virtual ~Cls() = default;

1.18.16 Variables and fields

// References and pointers belong to the name, not to the type:
int *ip;

// so, NOT "int* ip". This is objectively the "correct" way to write this, as
// this is how C++'s syntax tree works. When you write "int* a, b", the result
// will unfortunately be that a is of type int* and b is of type int; to make
// them both int* you need to write "int *a, *b". This is complete nonsense,
// but unfortunately what the C++ overlords decided to go with.

// Public fields are almost always a Bad Idea (TM). Whenever the outside world
// should probably not have write access to a field (variable in a class)
// because this would break things unless a large amount of care is taken, the
// field must be private or protected (depending on whether descendents are
// part of the "outside world" or not). When it makes sense, you can add
// getters (make sure these are const-correct) and/or setters (when
// applicable). Debugging is NOT a good reason to make things public; use
// getters!

// Shared global variables need to be declared as follows in a header file:
OPENQL_DECLSPEC extern int i;

// and as follows in the corresponding source file:
int i;

// OPENQL_DECLSPEC is defined in utils.h. If you don't do this, the OpenQL
// library will break on Windows.

1.18.17 Functions and methods

// Declaration in header file:

// A simple function.
int name(int a, int b = 2, const std::string &s = "hello");

// Implementation in source file:

/**
(continues on next page)

186 Chapter 1. How to read the documentation

OpenQL

(continued from previous page)

* A simple function.

*
* All functions should be documented with javadoc-style comments like these.

*/
int name(int a, int b = 2, const std::string &s) {

...
}

// If the parameter list becomes annoyingly long, indent as follows:
int name(

int a,
int b,
int c,
int d

) {
...

}

// Constructor lists either go on a single line along with all parameters:
int name(int a, int b) : a(a), b(b) {

...
}

// or look like this:
int name(

int a,
int b

) :
a(a),
b(b)

{
...

}

// Template statements go on the line in front of the function. Templated
// functions belong in header files, unless you really know what you're
// doing (explicitly instantiated specializations, etc.).
template <class A>
int *name(int a, const std::string &s) {

...
}

// Methods (functions on a class) should be static if they don't use any
// fields,
class Cls {

...
static void func();
...

};

void Cls::func() {
...

}

// or const if they only read fields:
class Cls {

...
(continues on next page)

1.18. C++ coding conventions 187

OpenQL

(continued from previous page)

void func() const;
...

};

void Cls::func() const {
...

}

// If you're intending to override methods, the method in the ancestor class
// should be marked virtual:
class Cls {

...
virtual void func();
...

}

void Cls::func() {
...

}

// and the overrides should be marked with override:
class Cls {

...
void func() override;
...

}

void ClsImpl::func() {
...

}

// Note that static, virtual, and override don't appear in the implementation
// for some reason, and the position of the statements is arbitrary at best.
// This is just how C++ works, unfortunately.

// Pass nontrivial argument types (anything that's larger than a pointer) by
// const reference unless you have a good reason not to. That is, when passing
// some random string, it should be done like
void print(const std::string &str);

// If you really know what you're doing you can deviate (rvalue references,
// perfect forwarding, etc.), but this is the norm.

// Passing mutable references for the purpose of mutating them in the function
// is allowed, but MUST BE CLEARLY DOCUMENTED.
/**
* Mutate the given string to make it lowercase.

*/
void to_lower(std::string &str);

// Passing by raw pointer is frowned upon, but still happens all over at the
// time of writing. At least be const-correct about it if you can.

188 Chapter 1. How to read the documentation

OpenQL

1.18.18 Expressions and function calls

// Apply whitespace and interpunction rules as if you were writing English,
// except for the open-parenthesis that immediately follows a function name,
// where the space is omitted. For example, don't write something like
// "hello (a+b , (x+y)*z)", but write
hello(a + b, (x + y) * z);

// When expressions are too long to fit in a single line, preferably indent as
// follows if you have parentheses and a comma-separated list:
hello(

a + b,
(x + y) * z

);

// If you don't have anything like that, you might want to introduce
// parentheses and wrap as follows:
long_expression * (

long_expression + long_expression
) * long_expression

// but in general, do whatever looks right (within context).

1.19 Doxygen documentation

Documentation for the C++ source code is generated by Doxygen. Properly documenting everything with docstrings
is unfortunately still an ongoing process, but at the very least all the functions and classes should be there, as automat-
ically documented by Doxygen.

1.20 Changelog

All notable changes to this project will be documented in this file. This project adheres to Semantic Versioning.

1.20.1 [next] - [TBD]

Added

• . . .

Changed

• . . .

1.19. Doxygen documentation 189

doxy/index.html
http://semver.org/

OpenQL

Removed

• . . .

Fixed

• . . .

1.20.2 [0.9.0] - [2021-05-27]

Added

• architecture system: platform and compilation strategy defaults are now built into OpenQL, preventing the need
for users to copypaste configuration files from the tests directory

• interface (C++ and Python) to compile cQASM 1.x

• allow ‘wait’ and ‘barrier’ in JSON section ‘gate_decomposition’

• CC backend:

– improved reporting on JSON semantic errors

– added check for dimension of “instruments/qubits” against “instruments/ref_control_mode/control_bits”

– added check for dimension of “instructions//cc/[signals,ref_signal]/value” against “instru-
ments/ref_control_mode/control_bits”

– added cross check of “instruments/ref_control_mode” against “instrument_definitions”

– added support for “pragma/break” in JSON definition to define ‘gate’ that breaks out of loop

– added support to distribute measurement results via DSM

– added support for conditional gates

– added compile option “–backend_cc_run_once”

– added compile option “–backend_cc_verbose”

Changed

• pass management: instead of a hardcoded compilation strategy, the strategy can be adjusted and fine-tuned
manually

• pass options: instead of doing everything with global options, global options were replaced with pass options as
much as possible

• most documentation is now generated from code and can be queried using API calls

• scheduler resources are completely reworked to be made more generic

• major internal refactoring and restructuring to facilitate the above two things

• CC backend:

– renamed JSON field “signal_ref” to “ref_signal”

– renamed JSON field “ref_signals_type” to “signal_type”

190 Chapter 1. How to read the documentation

OpenQL

– changed JSON field “static_codeword_override” to be a vector with one element
per qubit parameter. To edit a JSON file using Sublime, use Replace with Reg-
ular Expressions: find="static_codeword_override": ([0-9])+, re-
place="static_codeword_override": [\1]

– adopted new module synchronization scheme (“seq_bar semantics”, requires CC software >= v0.2.0, Py-
cQED after commit 470df5b)

– JSON field “instruction/type” no longer used by backend, use “instruction/cc/readout_mode” to flag mea-
surement instructions

– allow specification of 2 triggers in JSON field “control_modes/*/trigger_bits” to support dual-QWG

– changed label in generated code from “mainLoop” to “mainLoop”. Do not start kernel names with “”
(this should be specified by the API)

– removed initial 1 cycle (20 ns) delay at start of kernels (resulting from bundle start_cycle starting at 1)

– correctly handle kernel names containing “_” in conjunction with looping (formerly duplicate labels could
arise)

– added “seq_out 0,1” to program start to allow tracing of actual program start

Removed

• CC-light code generation, as the CC-light is being phased out in the lab, and its many passes were obstacles for
pass management and refactoring

• rotation optimization based on matrices; matrices in general were removed entirely because no one was using it

• the commute variation pass, as it has been superseded by in-place commutations within the scheduler

• the toffoli decomposition pass, as it wasn’t really used; to decompose a toffoli gate, use generic platform-driven
decomposition instead

• the defunct fidelity estimation logic from metrics.cc; this may be added again later, but requires lots of cleanup
and isn’t currently in use

• quantumsim and qsoverlay output; apparently this was no longer being used, and it was quite intertwined with
the CC-light backend

Fixed

• changed register used for FOR loop, so it doesn’t clash with delay setting

• fixed documentation for python setup and running tests

• various miscellaneous bugs, dangling pointers, and memory leaks

1.20. Changelog 191

OpenQL

1.20.3 [0.8.0] - [2019-10-31]

Added

• support for CC backend

Changed

Removed

Fixed

• fixed issue with duplicate kernel names

• updated json library to fix osx builds

1.20.4 [0.7.1] - [2019-09-02]

Added

Changed

• re-factored folders

Removed

Fixed

• fixed issue with correct python library picking on tud win systems

1.20.5 [0.7.0] - [2019-06-03]

Added

• support for single qubit flux options (auto/manual modes)

• option to control generation of qasm files and dot graphs

• NPROCS=n variable can now be set for faster compilation to use n threads

• conda build recipe

• conda binary releases for Linux, Windows platform (not yet available for OSX due to a conda distribution issue)

192 Chapter 1. How to read the documentation

OpenQL

Changed

• openql is now public

• improved resource-constrained scheduling

• sweep point array is now optional

• support for barrier/wait on all qubits

Removed

• set_sweep_points(sweep_points list, num of sweep points)

Fixed

• resource-constrained qasm is generated by same scheduler for cc-light as is used to generate qisa

• Illegal parameter in gate_decomposition

1.20.6 [0.6] - [2018-10-29]

Added

• generated qasm code conforms to cQASM v1.0 specification

• added libqasm to pytest to test conformance of generated qasm

Changed

• ALAP scheduler is the default option (Issue #193)

• compiling an empty program raises error (Issue #164)

Removed

Fixed

• tests are added to test option setting/getting (Issue #190)

1.20.7 [0.5.5] - [2018-10-25]

Added

Changed

• simplified interface of Program.set_sweep_points (Issue #184)

1.20. Changelog 193

OpenQL

Removed

Fixed

• instruction ordering to generate consistent qisa (Issue #190)

• stateful behaviour in OpenQL (Issue #171)

1.20.8 [0.5.4] - [2018-10-17]

Added

Changed

Removed

Fixed

• qubit ordering in SMIS and SMIT instructions

1.20.9 [0.5.3] - [2018-10-11]

Added

• added detuning constraints for cclight

Changed

Removed

Fixed

• alap scheduling for cclight

1.20.10 [0.5.2] - [2018-10-10]

Added

Changed

Removed

Fixed

• wrong target qubits in the configuration files

• Jenkins test build profile to test against assembler

194 Chapter 1. How to read the documentation

OpenQL

1.20.11 [0.5.1] - [2018-09-12]

Added

• API to obtain version number

Changed

Removed

Fixed

• qisa format (removed comma)

1.20.12 [0.5] - [2018-06-26]

Added

• support for classical instructions

• support for flow control (selection and repetition)

• classical register manager implementation

Changed

• measure instruction updated to support classical target register

• kernels are not any more fused to generate a single qisa program

Removed

• kernel does not recieve iteration count, deprecated in favor of for-loop

Fixed

• qisa format (pre-interval syntax updated)

1.20.13 [0.4.1] - [2018-05-31]

Added

•

1.20. Changelog 195

OpenQL

Changed

•

Removed

•

Fixed

• getting started example

1.20.14 [0.4] - [2018-05-19]

Added

• kernel conjugation/un-compute feature

• multi-qubit control decomposition

• toffoli decomposition

• QASM loader for QASM v1.0 syntax check

• initial support for Quantumsim backend

• vebosity levels

Changed

• program options can be set/get with simple api calls

• when adding gates, qubits should always be specified as list

• updated qisa-as support for tests

Removed

• qisa-as is not a part of openql

• prog.compile() does not get optimiz/schedule/verbose options

Fixed

• static iteration count for scheduled qasm

• roation angle printing

196 Chapter 1. How to read the documentation

OpenQL

1.20.15 [0.3] - [2017-10-24]

Added

• CCLight eQASM compiler

• unittests using qisa-as

• simplified gate decompositions

• wait/barrier instructions

Changed

•

Removed

•

Fixed

• varying prepz duration

• M_PI issue in windows install

1.20.16 [0.2] - [2017-08-18]

Added

• CBox eQASM compiler

• Python and C++ interface

• Configuration file specifiction

• trace support for qumis code

• cmake based builds

Changed

•

1.20. Changelog 197

OpenQL

Removed

•

Fixed

1.21 Contributors

OpenQL framework has been created initially by Nader Khammassi.

Note: please fill your contributions in this file

• Nader Khammassi

– CBox Backend

– Configuration file support

– QASM loader for QASM syntax check

– C++ exceptions

– QISA map file generation

– QISA Control store generation

• Imran Ashraf

– support for hybrid classical/quantum compilation

– support for control flow (selection and repetition)

– kernel un-compute/conjugation feature

– multi-qubit control decomposition

– toffoli decompositions

– openql intermediate representation

– quantumsim simulator Backend

– compilation for CC-Light architecture

- resource-constrained scheduling
- parallel (SIMD and VLIW) QISA code generation

– flexible platform constraints specification and its implementation

– support for multi-qubit gates

– scheduling (ASAP/ALAP) algorithms

– parametrized gate decomposition

– unit-tests

– python Package for OpenQL

– cmake-based Compilation for cross-platform build setup

– conda recipies and packages

– single qubit flux operations

– cQASM v1.0 support

198 Chapter 1. How to read the documentation

https://github.com/Nader-Khammassi
https://github.com/imranashraf

OpenQL

– OpenQL documentation

• Adriaan Rol

– Contributed to the Hardware Configuration Specification

– Utilizing qisa-as in unit-tests

– Testing OpenQL on the Hardware

• Xiang Fu

– Contributed to the Hardware Configuration Specification

– Testing OpenQL on the Hardware

• Wouter Vlothuizen

– backend for Central Controller (CC)

– new simplified qubit numbering scheme (rotated surface code fabric by 45 deg)

– support for comments in JSON file

– show line number and position on JSON syntax errors

– cleanup

• Hans van Someren

– uniform scheduling algorithm

– resource constraint framework design

– resource constraint description for CC-Light architecture

– resource constrained list scheduling algorithms

– backward resource constraint checking

– forward and backward list scheduling algorithms

– gate commutation while scheduling

– clifford gate sequence optimization

– out of order gate creation

– staged decomposition description

– generalized passes, dumping and reporting

– platform topology specification and its implementation

– single qubit flux operations design

– initial placement mapping implementation

– basic routing implementation

– latency sensitive routing

– resource constrained routing

– scheduler integration into routing

– use moves next to swaps while routing

– crossbar spin-qubit scheduling and resource management

– recursive look-back and look-ahead routing

1.21. Contributors 199

https://github.com/AdriaanRol
https://github.com/gtaifu
https://github.com/wvlothuizen
https://github.com/jvansomeren

OpenQL

– arbitrary topology routing

– OpenQL documentation

• Fer Grooteman

– added interface (C++ and Python) to compile cQASM 1.0

• Anneriet Krol

– unitary decomposition support

• Razvan Nane

– compiler API and modularity support

– added C printer pass

• Jeroen van Straten

– tutorial on DQCsim + OpenQL interoperation

– doxygen documentation

– improved pass management

– extensive cleanup; basically a rewrite of everything at this point

1.22 Program

Warning: This page has not been revised yet since modularization and refactoring, and may thus be out of date.

In the OpenQL programming model, one first creates the platform object and then with it the program object. After
that, one creates kernels with gates and adds these kernels to the program. Finally, one compiles the program and
executes it. At any time, options can be set and got.

We saw an example of this in Creating your first program. Here it is again but then with everything glued together:

from openql import openql as ql

platform = ql.Platform("myPlatform", "hardware_config_cc_light.json")

nqubits = 3

p = ql.Program("aProgram", platform, nqubits)

k = ql.Kernel("aKernel", platform, nqubits)

for i in range(nqubits):
k.gate('prepz', [i])

k.gate('x', [0])
k.gate('h', [1])
k.gate('cz', [2, 0])
k.gate('measure', [0])
k.gate('measure', [1])

p.add_kernel(k)

(continues on next page)

200 Chapter 1. How to read the documentation

https://github.com/QFer
https://github.com/anneriet
https://github.com/razvnane
https://github.com/jvanstraten

OpenQL

(continued from previous page)

p.compile()

Platform creation takes a name (to use in information messages) and the name of the platform configuration file. The
latter is used to initialize the platform attributes, e.g. to create custom gates.

A program is created by specifying a name, the platform, and the numbers of quantum and classical registers. The
name can be used as seed to create output file names and is used in information messages.

The main structural attribute of a program is its vector of kernels. This vector is in the simplest form initialized by
adding kernels one by one to it. The order of execution is then the order of the kernels in the vector. But there are
also program APIs to create control flow between kernels such as if/then, if/then/else, do/while and for. These take
one or more kernels representing the then-part, the else-part, or the loop-body, and add special kernels around them to
represent the control flow. These latter APIs also take the particular branch condition or the number of iterations as
parameter. See Kernel for an overview of these APIs and see Classical gate attributes in the internal representation
for a definition of the control flow internal representation.

The gates of a kernel’s circuit are always executed sequentially. At the end of a circuit, control passes on to the next
kernel in the program’s vector of kernels.

After having completed adding kernels, the program has been completely specified. It is represented by a vector of
kernels, each with a circuit. And in this form, the program is compiled by invoking its p.compile() method.

In the p.compile() method, the platform independent compiler passes and then the platform dependent compiler
passes are called one by one in the order specified by the OpenQL compiler’s internals. After compilation, the p.
compile() method returns, with the internal representation still available. Compilation will have resulted in the
creation of several external representations, to be used by e.g. simulation, assembly/execution or human inspection.

[API TBD]

1.23 Kernel

Warning: This page has not been revised yet since modularization and refactoring, and may thus be out of date.

A kernel conventionally models a circuit with quantum gates ending in one or more measurements. In OpenQL, this
has been extended with:

• control flow that can jump at the end of a kernel to the start of another kernel; see this section

• classical gates mixed with quantum gates (including measurements) in a single circuit with the design objective
to support control flow changes; see Classical Instructions; measurements are just gates with classical results
and can be anywhere, bridging quantum code to classical code; a kernel doesn’t necessarily have to contain a
measurement

In OpenQL a kernel is an object; it has a name, a type, and a circuit as its main structural attributes. This circuit is
a vector of gates.

The type of a kernel with a non-empty circuit with gates is STATIC. During execution, all gates of such a circuit are
executed from the start to the end. After executing the last gate, control will be transferred to the next kernel in the
vector of kernels. This vector of kernels is an attribute of the governing program object.

You saw a first kernel which was a STATIC one being created in the example program in Program.

Kernels of other types are used to represent control flow. This is the topic of the remainder of this section. If you are
not interested in this now, you can read this later.

1.23. Kernel 201

OpenQL

Let us first look at some example Python OpenQL code (adapted from tests/test_hybrid.py):

num_qubits = 5
num_cregs = 10

p = ql.Program('test_classical', platform, num_qubits, num_cregs)
kfirst = ql.Kernel('First', platform, num_qubits, num_cregs)

create classical registers
rs1 = ql.CReg()
rs2 = ql.CReg()

if (rs1 == rs2) then Thenpart else Elsepart endif
kfirst.classical(rs1, ql.Operation(...))
kfirst.classical(rs2, ql.Operation(...))
kthen = ql.Kernel('Thenpart', platform, num_qubits, num_cregs)
kthen.gate('x', [0])
kelse = ql.Kernel('Elsepart', platform, num_qubits, num_cregs)
kelse.gate('y', [0])
p.add_if_else(kthen, kelse, ql.Operation(rs1, '==', rs2))

loop 10 times over Loopbody endloop;
kloopbody = ql.Kernel('Loopbody', platform, num_qubits, num_cregs)
kloopbody.gate('x', [0])
p.add_for(kloopbody, 10)
Afterloop
kafterloop = ql.Kernel('Afterloop', platform, num_qubits, num_cregs)
kafterloop.gate('y', [0])
p.add_kernel(kafterloop)

do Dowhileloopbody while (rs1 < rs2)
kdowhileloopbody = ql.Kernel('Dowhileloopbody', platform, num_qubits, num_cregs)
kdowhileloopbody.gate('x', [0])
kdowhileloopbody.classical(rs1, ql.Operation(...))
kdowhileloopbody.classical(rs2, ql.Operation(...))
p.add_do_while(kdowhileloopbody, ql.Operation(rs1, '<', rs2))
Afterdowhile
kafterdowhile = ql.Kernel('Afterdowhile', platform, num_qubits, num_cregs)
kafterdowhile.gate('y', [0])
p.add_kernel(kafterdowhile)

p.compile()

These are three examples in one:

• the first creates an if-then-else construct under the condition that rs1 equals rs2

• the second creates a for loop with 10 iterations

• the third one creates a do-while construct executing the Dowhileloopbody as long as rs1 is less than rs2

We see that ordinary kernels are created and filled with a single gate; these are the STATIC kernels. These kernels
serve as the thenpart, elsepart, loopbody, etc. And then we see three examples of the creation of a control-flow
construct, with the ordinary kernels as parameters.

After this, we’ll have the following 15 kernels in the kernels vector of program test_classical (some are
named after their type, see below): First, IF_START, Thenpart, IF_END, ELSE_START, Elsepart,
ELSE_END, FOR_START, Loopbody, FOR_END, Afterloop, DO_WHILE_START, Dowhileloopbody,
DO_WHILE_END, Afterdowhile.

202 Chapter 1. How to read the documentation

OpenQL

1.23.1 Control flow in the internal representation

The classical gates in Classical Instructions deal with classical computation. Control flow is represented in the internal
representation as kernels of a special type, with their special attributes.

The relevant kernel attributes are type, name, iterations, and br_condition. How these relate, is summa-
rized in the next table:

type name cir-
cuit

br_condition itera-
tions

example OpenQL creating this
kernel

STATIC label gates p.add(ql.kernel(label, . . .))
FOR_START body.name+’for_start’ loop-

count
p.add_for(body, loopcount)

FOR_END body.name+’for_end’
DO_WHILE_STARTbody.name+’do_while_start’ loopcond p.add_do_while(body, loopcond)
DO_WHILE_END body.name+’do_while’
IF_START then.name+’if’ thencond p.add_if(then, thencond)
IF_END then.name+’if_end’
ELSE_START else.name+’else’ p.add_if_else(then, else, then-

cond)ELSE_END else.name+’else_end’

The example OpenQL in the last column shows how a kernel of the type is created. The table also shows how the
parameters of the OpenQL call creating the kernel are used to initialize the kernel’s attributes.

Further information on these attributes:

• name is unique among the other names of kernels and is often used to construct a label before the first gate of
the circuit; for non-STATIC kernels it is generated in a systematic way from the name of the first kernel of the
body (or then or else part) and from the kernel type to make it easy to generate the conditional branches to the
respective label; the name column suggests a way but in practice this can more complicated in the presence of
nested constructs (then additional counts are needed) or in the presence of multiple kernels (a program object)
constituting the body (or then or else part)

• circuit (the real kernel attribute name is c but this is very non-descriptive) contains the gates and is empty
for non-STATIC kernels

• br_condition is an expression that is created by a call to an Operation() method (see Classical Instruc-
tions); it represents a condition so it must be of RELATIONAL type; this attribute stores the condition under
which the (first) body of the conditional construct is executed; the latter is the kernel referenced by then in
case of an if or an if-else; and it is the kernel representing the loop’s body in case of a do-while. body, then,
and else all stand for references to the other kernels in the respective constructs. Similarly, loopcond, and
thencond stand for the expressions representing the condition.

loopcount and iterations are of type size_t and so are non-negative and are assumed to have a value of at
least 1.

The semantics of a kernel with respect to control flow is described next, separately for each kernel type:

• type is STATIC: the kernel’s circuit is meant to be executed sequentially from start to end; after executing the
last gate, control is transferred to the next kernel in the vector of kernels

• type is FOR_START: the kernel sets up a loop with iterations specifying the iteration count, of which the
loop body starts with the next kernel, and of which the loop body ends with the first kernel with type FOR_END

• type is FOR_END: the kernel takes care of control transfer to the start of the loop by decrementing the iteration
counter and conditionally branching to the start of the loop body as long as the counter is not 0

• type is DO_WHILE_START: the kernel sets up a conditional loop of do-while type, of which the loop body
starts with the next kernel, and of which the loop body ends with a matching kernel with type DO_WHILE_END

1.23. Kernel 203

OpenQL

• type is DO_WHILE_END: the kernel takes care of conditional control transfer to the start of the loop by
checking the specified branch condition br_condition and conditionally branching to the start of the loop
body as long as it evaluates to true

• type is IF_START: the kernel takes care of checking the specified branch condition br_condition and
conditionally branching to a matching kernel with type IF_END when it evaluates to false

• type is IF_END: the kernel signals a merge of control flow from an IF_START type kernel

• type is ELSE_START: the kernel takes care of checking the specified branch condition br_condition and
conditionally branching to a matching kernel with type ELSE_END when it evaluates to true

• type is ELSE_END: the kernel signals a merge of control flow from an ELSE_START type kernel

The kernel’s name functions as a label to be used in control transfers.

Note There aren’t gates for control flow (control gates), only kernel attributes.

Note Control flow gates cannot be configured in the platform configuration file.

Note Control flow instructions/gates cannot be scheduled.

Note Code generation of control flow, i.e. the mapping from the internal representation to the target plat-
form’s instruction set and to QASM requires code inside the OpenQL compiler that is at a different
place than the mapping of gates in the internal representation to the target platform’s instruction set
or QASM; that there have to be these parallel pieces of code inside the OpenQL compiler compli-
cates the compiler unnecessarily.

Note Scheduling around control flow, i.e. defining durations, dependences, relation to resources, is ir-
regularly organized as well; a property of scheduling is that once scheduling of the main code has
been done, all later additional scheduling must not disturb the first schedule, and thus that usually to
accomplish this, more strict constraints are applied with less optimal code as result; and any attempt
is error-prone as well. It also means that the number of cycles to transfer control flow from one
kernel to the next kernel is not modeled and that loop scheduling and other forms of inter-kernel
scheduling are unnecessarily hard to support.

1.23.2 Control flow in the output external representation

As explained above in Kernel, the kernels in the kernels vector of a program by default execute in the order of
appearance in this vector, i.e. at the end of each kernel, control is transferred to the next kernel in the vector. This
holds for kernels of type STATIC, the type of kernels that store the gates.

When generating control flow, before the start and/or after the end of a kernel additional code is generated, depending
on the kernel’s type. The code before the start of a kernel is called prologue. The code of the kernel itself is called
body. The code after the end of a kernel is called epilogue.

In this, frequently a QASM conditional branch or the conditional branch with the condition inversed is generated.
The following table shows by example which conditional branch and inversed conditional branch is generated for a
particular br_condition, operands, and target label:

br_condition operands target label QASM cond. branch QASM inv. cond branch
“eq” rs1, rs2 label beq rs1, rs2, label bne rs1, rs2, label
“ne” bne rs1, rs2, label beq rs1, rs2, label
“lt” blt rs1, rs2, label bge rs1, rs2, label
“gt” bgt rs1, rs2, label ble rs1, rs2, label
“le” ble rs1, rs2, label bgt rs1, rs2, label
“ge” bge rs1, rs2, label blt rs1, rs2, label

The following is generated for a QASM prologue:

204 Chapter 1. How to read the documentation

OpenQL

• the name of the kernel as label

• in case of IF_START: an inverse conditional branch for the given br_condition over the then part to the
corresponding IF_END kernel

• in case of ELSE_START: a conditional branch for the given br_condition over the else part to the corre-
sponding ELSE_END kernel

• in case of FOR_START: the initialization using ldi``s of r29, r30 and r31 with
``iterations, 1 and 0, respectively, in which r30 is the increment, and r31 the loop counter

The following is generated for a QASM epilogue:

• the name of the kernel as label

• in case of DO_WHILE_END: a conditional branch for the given br_condition back over the body part to
the corresponding DO_WHILE_START kernel

• in case of FOR_END: an “add” to r31 of r30 (which increments the loop counter by 1), and a conditional branch
as long as r31 is less than r29, the number of iterations, to the loop body

1.23.3 API

In OpenQL this kernel object also supports adding gates to its circuit using the kernel API. To that end, a kernel object
has attributes such as qubit_count, and creg_count to check validity of the operands of the gates that are to
be created. And it needs to know the platform configuration file that is to be used to create custom gates; for this, the
API that creates a kernel object has the platform object as one of its parameters. Next to this, the kernel object has a
method to create each particular default gate.

[TBD]

1.24 Quantum Gates

Warning: This page has not been revised yet since modularization and refactoring, and may thus be out of date.

Gates in OpenQL are the constructs that refer to operations to be executed somehow on the computing platform.

A gate refers to an operation and to zero or more operands.

Gates are organized in circuits as vectors of gates, i.e. linear sequences of gates. A circuit defines the operation of a
kernel. And a program consists of multiple kernels.

Gates can be subdivided in several kinds. This is useful in the description of the passes below.

First, gates can be subdivided according to where their execution has effect:

• quantum gates; these gates execute in the quantum computing hardware; these gates have at least one qubit as
(implicit or explicit) operand; these gates can have classical registers as operand as well and may rely on some
execution capability in classical hardware

• classical gates; these gates execute in classical hardware only; these don’t have any qubit as operand, only zero
or more classical registers

• directives; these gates execute neither in quantum nor in classical hardware; these look like gates but don’t
influence execution, e.g. the display gate

Quantum gates can also be subdivided seen from the state of a qubit:

1.24. Quantum Gates 205

OpenQL

• preparation gates; (usually one-qubit) gates taking qubits in an undefined state and bringing them in a particular
defined state

• rotation gates; gates that perform unitary rotations on the state of the operand qubits; examples are identity, x,
rx(pi), cnot, swap, and toffoli.

• measurement gates; gates that measure out the operand qubits, leaving them in a base state; the measurement
result can be left in a classical register

• scheduling gates; gates that only influence execution timing regarding the operand qubits; they provide a cycle
window for the qubit state to be operated upon before further use; examples are the wait and barrier gates

Quantum gates can further be subdivided from the number of operands they take; this becomes relevant when gates
are mapped on a quantum computing platform that only supports two-qubit rotation gates when the operand qubits are
physically adjacent, as is the case in CC-Light:

• one-qubit gates; quantum gates operating on one qubit

• two-qubit gates; quantum gates operating on two qubits; e.g. two-qubit rotation gates are the main objective in
the current mapping pass since these gates require their qubit operands to be connected in CC-Light

• multi-qubit gates; quantum gates operating (implicitly or explicitly) on more than two qubits; e.g. multi-qubit
rotation gates must be decomposed to one-qubit and two-qubit gates because more-qubit primitive rotation gates
are not supported by CC-Light

Particular classes of quantum gates can be further recognized; these definitions are given mainly to refer to from other
chapters of this documentation, especially from the compiler passes chapter and the quantum gate chapter:

• primitive gates; quantum gates natively supported by instructions of the quantum computing platform

• pauli gates; the Identity, X, Y and Z rotation gates

• clifford gates; the one-qubit clifford gates form a group of 24 elements / equivalence classes each composed
from a sequence of one or more rotations by a multiple of 90 degrees in one dimension (X, Y or Z)

• default gates; quantum gates predefined by OpenQL

• custom gates; quantum gates defined by the platform configuration file

• composite gates; custom gates that are decomposed to their component gates when created

• specialized gates; custom gates with a definition in the configuration file that is specific for the particular qubit
operands that are specified in it; the semantic attributes of several specialized gates with the same quantum
operation but different qubit operands may differ (in-line with the purpose of a gate being specialized)

• parameterized gates; custom gates that are not specialized, i.e. with a definition that is not specific for particular
qubit operands; all gates created (usually for different qubits) from the same parameterized gate in the platform
configuration file have the same semantic attributes

1.24.1 Quantum gate attributes in the internal representation

Quantum gate attributes can be subdivided in the following kinds:

• structural attribute; these attributes define the gate, and are mandatory; key examples are operation name and
operands. These attributes are taken from the OpenQL program or the QASM external representation of a gate.
These never change after creation and usually are identical over multiple compilations.

• semantic attribute; these attributes define more of the semantics of the gate, usually for a specific purpose; their
value fully depends on and is derived from the gate’s structural attributes. In OpenQL they are defined in the
configuration file. Furthermore, these attributes usually don’t change during compilation, although that would
be possible when done in a consistent way over all gates. The latter is consistent with changing the configuration
file with respect to the values of the semantic attributes.

206 Chapter 1. How to read the documentation

OpenQL

• result attribute; the value of these attributes is computed during compilation. Usually there is a choice from var-
ious strategies and platform parameters how to compute these and so result attributes are seen as an independent
kind of attributes. A key example is the cycle attribute as computed by the scheduler. At the start of compilation,
their value is undefined.

Below the OpenQL gate attributes are summarized in a table together with their key characteristics.

Attribute kind example used by updated by C++ type
name structural “CZ q0,q1” all passes never string
operands [q0,q1] vector<size_t>
creg_operands [r23] vector<size_t>
angle numpy.pi double
type __t_gate__ gate_type_t
duration semantic 80 schedulers, etc. size_t
mat optimizer pass cmat_t
cycle result 4 code generation scheduler size_t

Custom gates have an additional set of attributes, primarily supporting the initialization of the gate attributes from
configuration file parameters.

Some further notes on the gate attributes:

• the name of a gate includes the string representations of its qubit operands in case of a specialized gate; so
in general, when given a name, one has to take care to isolate the operation from it; one may assume that the
operation is a single identifier optionally followed by white space and the operands

• gates are most directly distinguished by their name

Note Distinguishing gates internally in the compiler by their name is problematic; distinguishing by
their type (see the table below) would be better; the latter conveys the semantic definition and is
independent of the representation (e.g. mrx90, mx90, and Rmx90 all could be names of a -90
degrees X rotation); furthermore, a name is something of the external representation and is mapped
to the internal representation using the platform configuration file; however, the enumeration type of
type can never include all possible gates (e.g. those with arbitrary angles, any number of operands,
etc.) so the type inevitably can be imprecise; but it can be precise when the type refers to the
operation only, i.e. excluding the operands

• qubit and classical operands are represented by unsigned valued indices starting from 0 in their respective
register spaces

• angle is in radians; it specifies the value of the arbitrary angle of those operations that need one; it is initialized
only from an explicit specification as parameter value of the gate creation API; expressions initializing this
parameter are usually based on some definition of pi such as from numpy

• duration is in nanoseconds, just as the timing specifications in the platform configuration file; scheduling-
like passes divide it (rounding up) by the cycle_time to compute the number of cycles that an operation takes; it
is initialized implicitly when the gate is a default gate or a custom gate, or explicitly from a parameter value of
a gate creation API

• mat is of a two-dimensional complex double valued matrix type with dimensions equal to twice the number of
operands; it is only used by the optimizer pass; it is initialized implicitly when the gate is a default gate or a
custom gate

• cycle is in units of cycle_time as defined in the platform; the undefined value is
std::numeric_limits<int>::max() also known as INT_MAX. A gate’s cycle attribute gets de-
fined by applying a scheduler or a mapper pass, and remains defined until any pass is done that invalidates the
cycle attribute. As long as the gate’s cycle attribute is defined (and until it is invalidated), the gates must be
ordered in the circuit in non-decreasing cycle order. Also, there is then a derived internal circuit representation,

1.24. Quantum Gates 207

OpenQL

the bundled representation. See Circuits and bundles in the internal representation. The cycle attribute
invalidation generally is the result of adding a gate to a circuit, or any optimization or decomposition pass.

• type is an enumeration type; the following table enumerates the possible types and their characteristics:

type operands example in QASM kind
__identity_gate__ 1 qubit i q[0] rotation
__hadamard_gate__ h q[0]
__pauli_x_gate__ x q[0]
__pauli_y_gate__ y q[0]
__pauli_z_gate__ z q[0]
__phase_gate__ s q[0]
__phasedag_gate__ sdag q[0]
__t_gate__ t q[0]
__tdag_gate__ tdag q[0]
__rx90_gate__ rx90 q[0]
__mrx90_gate__ xm90 q[0]
__rx180_gate__ x q[0]
__ry90_gate__ ry90 q[0]
__mry90_gate__ ym90 q[0]
__ry180_gate__ y q[0]
__rx_gate__ 1 qubit, 1 angle rx q[0],3.14
__ry_gate__ ry q[0],3.14
__rz_gate__ rz q[0],3.14
__cnot_gate__ 2 qubits cnot q[0],q[1]
__cphase_gate__ cz q[0],q[1]
__swap_gate__ swap q[0],q[1]
__toffoli_gate__ 3 qubits toffoli q[0],q[1],q[2]
__prepz_gate__ 1 qubit prepz q[0] preparation
__measure_gate__ measure q[0] measurement
__nop_gate__ none nop scheduling
__dummy_gate__ sink
__wait_gate__ 0 or more qubits, duration wait 1
__display__ 0 or more qubits display directive
__display_binary__ display_binary
__classical_gate__ 0 or more classical regs. add r[0],r[1] classical
__custom_gate__ defined by config file
__composite_gate__

The example column shows in the form of an example the QASM representation of the gate. For custom gates, the
QASM representation is the gate name followed by the representation of the operands, as with the default gates.

There is an API for each of the above gate types using default gates.

Some notes on the semantics of these gates:

• the wait gate waits for all its (qubit) operands to be ready; then it takes a duration of the given number of cycles
for each of its qubit operands to execute; in external representations it is usually possible to not specify operands,
it then applies to all qubits of the program; the barrier gate is sometimes found in external representations
but is identical to a wait with 0 duration on its operand qubits (or all when none were specified)

• the nop gate is identical to wait 1, i.e. a one cycle execution duration applied to all program qubits

• dummy gates are SOURCE and SINK; these gates don’t have an external representation; these are internal to
the scheduler

208 Chapter 1. How to read the documentation

OpenQL

• custom and composite gates are fully specified in the configuration file; these shouldn’t have this type because
it doesn’t serve a purpose but have a type that reflects its semantics

1.24.2 Circuits and bundles in the internal representation

A circuit of one kernel is represented by a vector of gates in the internal representation, and is a structural attribute of
the kernel object. The gates in this vector are assumed to be executed from the first to the last in the vector.

During a scheduling pass, the cycle attribute of each gate gets defined. See its definition in Quantum gate attributes
in the internal representation. The gates in the vector then are ordered in non-decreasing cycle order.

The schedulers also produce a bundled version of each circuit. That is done by the bundler function available
as ql::ir::bundler(circuit, cycle_time). It constructs and returns the bundled representation of the
given circuit. The cycle attribute of each gate of the circuit must be valid, and the gates in the circuit must have been
sorted by their cycle value.

In the internal bundles representation a circuit is represented by a list of bundles in which each bundle represents the
gates that are to be started in a particular cycle. A bundle can contain a mixture of quantum and classical gates. Each
bundle is structured as a list of sections and each section as a list of gates (actually gate pointers). The gates in each
section share the same operation but have different operands, obviously. The latter prepares for code generation for a
SIMD instruction set in which a single instruction with one operation can have multiple operands. Each bundle has
two additional attributes:

• start_cycle representing the cycle in which all gates of the bundle start

• duration_in_cycles representing the maximum duration in cycles of the gates in the bundle

This internal bundles representation is used during QISA generation instead of the original circuit.

1.24.3 Input external representation

OpenQL supports as input external representation currently only the OpenQL program, written in C++ and/or Python.
This is an API-level interface based on platform, program, kernel and gate objects and their methods. Calls to these
methods transfer the external representation into the internal representation (also called intermediate representation
or IR) as sketched above: a program (object) consisting of a vector of kernels, each containing a single circuit, each
circuit being a vector of gates.

Quantum gates are created using an API of the general form:

k.gate(name, qubit operand vector, classical operand vector, duration, angle)

in which particular operands can be empty or 0 depending on the particular kind of gate that is created. Gate creation
upon a call to this API goes through the following steps to create the internal representation:

1. the qubit and/or classical register operand indices are checked for validity, i.e. to be in the range of 0 to the
number specified in the program creation API minus 1

2. if the configuration file contains a definition for a specialized composite gate matching it, it is taken; the qubit
parameter substitution in the gates of the decomposition specification is done; each resulting gate must be avail-
able as (specialized or parameterized, and non-composite) custom gate, or as a default gate; the decomposition
is applied and all resulting gates are created and added to the circuit

3. otherwise, if a parameterized composite gate is available, take it; the parameter substitution in the gates of the
decomposition specification is done; each resulting gate must be available as (specialized or parameterized, and
non-composite) custom gate, or as a default gate; the decomposition is applied and all resulting gates are created
and added to the circuit

1.24. Quantum Gates 209

OpenQL

4. otherwise, if a specialized custom gate is available, create it with the attributes specified as parameter of the API
call above

5. otherwise, if a parameterized custom gate is available, create it with the attributes specified as parameter of the
API call above

6. otherwise, if a default gate (predefined internally in OpenQL) is available, create it with the attributes specified
as parameter of the API call above

7. otherwise, it is an error

1.24.4 Output external representation

There are two closely related output external representations supported, both dialects of QASM 1.0:

• sequential QASM

• bundled QASM

In both representations, the QASM representation of a single gate is as defined in the example in QASM column in the
table above.

When the gate’s cycle attribute is still undefined, the sequential QASM representation is the only possible external
QASM representation. Gates are specified one by one, each on a separate line. A gate meant to execute after another
gate should appear on a later line than the latter gate, i.e. the gates are topologically sorted with respect to their
intended execution order. Kernels start with a label which names the kernel and serves as branch target in control
transfers.

Once the gate’s cycle attribute has been defined (and until it is invalidated), and in addition to the sequential QASM
representation above (that ignores the cycle attribute values), the bundled QASM representation can be generated that
instead reflects the cycle attribute values.

Each line in the bundled QASM representation represents the gates that start execution in one particular cycle in a
curly bracketed list with vertical bar separators. Each subsequent line represents a subsequent cycle. When there isn’t
a gate that starts execution in a particular cycle, a wait gate is specified instead with as integral argument the number
of cycles to wait. As with the sequential QASM representation, kernels start with a label which names the kernel and
serves as branch target in control transfers.

1.25 Classical Instructions

Warning: This page has not been revised yet since modularization and refactoring, and may thus be out of date.

OpenQL supports a mix of quantum and classical computing at the gate level. Please recall that classical gates are
gates that don’t have any qubit as operand, only zero or more classical registers and execute in classical hardware.

Let us first look at some example code (taken from tests/test_hybrid.py):

num_qubits = 5
num_cregs = 10

p = ql.Program('test_classical', platform, num_qubits, num_cregs)

k1 = ql.Kernel('aKernel1', platform, num_qubits, num_cregs)

create classical registers

(continues on next page)

210 Chapter 1. How to read the documentation

OpenQL

(continued from previous page)

rd = ql.CReg()
rs1 = ql.CReg()
rs2 = ql.CReg()

add/sub/and/or/xor
k1.classical(rd, ql.Operation(rs1, '+', rs2))

not
k1.classical(rd, ql.Operation('~', rs2))

comparison
k1.classical(rd, ql.Operation(rs1, '==', rs2))

initialize (rd = 2)
k1.classical(rd, ql.Operation(2))

assign (rd = rs1)
k1.classical(rd, ql.Operation(rs1))

measure
k1.gate('measure', [0], rs1)

add kernel
p.add_kernel(k1)
p.compile()

In this, we see a few new methods:

• ql.CReg(): Get a free classical register (creg) using the classical register constructor. The corresponding de-
structor would free it again.

• k.classical(creg, operation): Create a classical gate, assigning the value of the operation to the specified des-
tination classical register. The destination classical register and any classical registers that are operands to the
operation must have indices that are less than the number of classical registers specified with the creation of
kernel k. The gate is added to kernel k’s circuit.

• ql.Operation(value): Create an operation loading the immediate value value.

• ql.Operation(creg): Create an operation loading the value of classical register creg.

• ql.Operation(operator, creg): Create an operation applying the unary operator operator on the value of classical
register creg.

• ql.Operation(creg1, operator, creg2): Create an operation applying the binary operator operator on the values of
classical registers creg1 and creg2.

The operators in the calls above are a string with the name of one of the familiar C operators: the binary operators +,
-, &, |, ^, ==, !=, <, >, <=, and >=; or the unary ~.

Please note the creation of the quantum measurement gate that takes a classical register as operand to store the result.

1.25. Classical Instructions 211

OpenQL

1.25.1 Classical gate attributes in the internal representation

A classical gate has all general gate attributes, of which some are not used, and one additional one:

Attribute kind example used by updated by C++ type
name structural “add” all passes never

scheduler
string

creg_operands [r0,r1] vector<size_t>
int_operand 3 int
type __classical_gate__ gate_type_t
duration semantic 20 schedulers, etc. size_t
cycle result 4 code generation size_t
operands never
angle
mat

Some further notes on the gate attributes:

• name: The internal name. Happens to correspond to the gate name in the output QASM representation.

• creg_operands: Please note that for all gates the classical operands are in the creg_operands attribute, and
the quantum operands are in the operands attribute.

• int_operand: An immediate integer valued operand is kept here.

• type: Is always __classical_gate__. Classical gates are distinguished by their name.

Note That classical gates are distinguished by their name and not by some type, is not as problematic as
for quantum gates. The names of classical gates are internal to OpenQL and have no relation to an
external representation.

• duration: Has a built-in value of 20.

Note That the value of duration is built-in, is strange. A first better value would be cycle_time.

• operands, angle, and mat are not used as attributes by classical gates.

The following classical gates are supported:

212 Chapter 1. How to read the documentation

OpenQL

name operands operation
type

inv opera-
tion

OpenQL example

“add” 1 dest and 2 src reg indices ARITH-
METIC

k.classical(rd, Operation(rs1, ‘+’,
rs2))

“sub” k.classical(rd, Operation(rs1, ‘-‘, rs2))
“eq” RELA-

TIONAL
“ne” k.classical(rd, Operation(rs1, ‘==’,

rs2))
“ne” “eq” k.classical(rd, Operation(rs1, ‘!=’,

rs2))
“lt” “ge” k.classical(rd, Operation(rs1, ‘<’,

rs2))
“gt” “le” k.classical(rd, Operation(rs1, ‘>’,

rs2))
“le” “gt” k.classical(rd, Operation(rs1, ‘<=’,

rs2))
“ge” “lt” k.classical(rd, Operation(rs1, ‘>=’,

rs2))
“and” BITWISE k.classical(rd, Operation(rs1, ‘&’,

rs2))
“or” k.classical(rd, Operation(rs1, ‘|’, rs2))
“xor” k.classical(rd, Operation(rs1, ‘^’,

rs2))
“not” 1 dest and 1 src reg index k.classical(rd, Operation(‘~’, rs))
“mov” ARITH-

METIC
k.classical(rd, Operation(rs))

“ldi” 1 dest reg index, 1
int_operand

k.classical(rd, Operation(3))

“nop” none undefined k.classical(‘nop’)

In the above:

Operation() creates an expression (binary, unary, register, or immediate); apart from in the OpenQL interface as
shown above, it is also used as expression in the internal representation of the br_condition attribute of a kernel

operation type indicates the type of operation which is mainly used for checking

inv operation represents the inverse of the operation; it is used in code generation of conditional branching; see
Kernel

1.25.2 Classical gates in circuits and bundles in the internal representation

In circuits and bundles, no difference is made between classical and quantum gates. Classical gates are scheduled
based on their operands and duration. The cycle attribute reflects the cycle in which the gate is executed, as usual.

Scheduling of classical instructions is assigning cycle values to these so that the register dependences of these are
guaranteed to be met (ordinary scheduler); when resource constraints would be involved, those should be adhered to
as well (rcscheduler). The cycle_time would have to be the greatest common divider of the duration of all
gates, classical and quantum.

Classical instructions may depend on quantum gates when they retrieve the result of measurement. Quantum gates
may have a control dependence on classical code because of a conditional branch; with immediate feedback, in which
a single gate is performed conditionally on the value of a classical register, there also is a dependence of a quantum
gate on a classically computed value.

From these dependences, an exact cycle value of the start of execution of each gate can be computed, relative to the
start of execution of a kernel/circuit. Any constraints (maximum number of classical instructions to start in one cycle,

1.25. Classical Instructions 213

OpenQL

maximum number of quantum gates to start in one cycle, overlapping resource uses) have to encoded in resources
which are then adhered to by the rcscheduler.

1.25.3 Input external representation

OpenQL supports as input external representation currently only the OpenQL program, written in C++ and/or Python.
See Input external representation.

Classical gates are created using an API of the form as shown above in Classical Instructions. The table above shows
the correspondence between the input external and internal representation.

Note There is no role for the configuration file in creating classical gates. This is a lost opportunity
because it would have harmonized classical and quantum gates more. When defining QASM as
input external representation, this might be revised.

1.25.4 Output external representation

There are two closely related output external representations supported, both dialects of QASM 1.0; see Output ex-
ternal representation: sequential and bundled QASM. Again, these don’t make a difference between classical and
quantum gates.

The following table shows the QASM representation of a single classical gate:

name example operands QASM representation
“add” 0 as dest reg index, 1 and 2 as source reg indices add r0, r1, r2
“sub” sub r0, r1, r2
“and” and r0, r1, r2
“or” or r0, r1, r2
“xor” xor r0, r1, r2
“eq” eq r0, r1, r2
“ne” ne r0, r1, r2
“lt” lt r0, r1, r2
“gt” gt r0, r1, r2
“le” le r0, r1, r2
“ge” ge r0, r1, r2
“not” 0 as dest reg index, 1 as source reg index not r0, r1
“mov” mov r0, r1
“ldi” 0 as dest reg index, 3 as int_operand ldi r0, 3
“nop” none nop

1.26 Platforms and architectures

OpenQL supports various target platforms. These platforms can be software simulators or architectures targetting
hardware quantum computers.

In principle, platforms are described entirely via a JSON configuration file; as few architecture-dependent things
as possible are actually hardcoded in OpenQL. This means, however, that the platform configuration file is quite
extensive, making the learning curve for making one from scratch or even adjusting one pretty steep. Furthermore,
actually compiling for a particular platform may also require a custom compilation strategy (i.e. which steps/passes
the compiler takes/does to actually compile the program), further complicating things. Therefore, OpenQL ships with
a bunch of logic to generate sane default settings for particular architectures that we support out of the box. These
architectures, and the defaults they provide, are listed in the Supported architectures section.

214 Chapter 1. How to read the documentation

OpenQL

A platform can be created in OpenQL by using one of the various constructors for the ql.Platform() class. The
most commonly used way to do obtain a platform object is as follows:

platform = ql.Platform('<platform_name>', `<platform_config>`)

Here, <platform_name> is anything you want it to be (it’s only used for logging) and <platform_config>
can be a recognized architecture name, such as “none” or “cc”, or it can point to a platform configuration file. For
example, a platform with the name CCL_platform that uses the defaults for CC-light can be created as:

platform = ql.Platform('CCL_platform', 'cc_light')

For more details, see also the Python API, Configuration, and Supported architectures sections.

1.27 Compiler

Warning: This page has not been revised yet since modularization and refactoring, and may thus be out of date.

To compile a program, the user needs to configure a compiler first. Until version 0.8, this program compilation
was done using a monolithic hard-coded sequence of compiler passes inside the program itself when program.
compile() function was called. This is the legacy operation mode, which is currently described in the Program
documentation page. However, starting with version 0.8.0.dev1, the programer has the ability to configure its own
pass sequence using the Compiler API.

There are two options on how to configure a compiler. The first and the most straightforward is to define a compiler ob-
ject giving it as the second parameter the name of a json configuration, similar of how the Platforms and architectures
is defined. The following code line shows an example of a such initialization:

... different other program initializations ...

c = ql.Compiler("testCompiler", "cc_compiler_cfg.json")

..... # definition of Platform and Program p

c.compile(p)

In the above code, the cc_compiler_cfg.json compiler configuration file is used. This can be found in the
`.\test’ folder within the OpenQL installation directory and has the following structure:

1 {
2 "CompilerPasses":
3 [
4 {
5 "passName" : "Writer",
6 "passAlias": "initialqasmwriter"
7 "options":
8 [
9 {

10 "optionName" : "eqasm_compiler_name",
11 "optionValue": "eqasm_backend_cc"
12 },
13
14]
15 },

(continues on next page)

1.27. Compiler 215

OpenQL

(continued from previous page)

16 ...
17]
18 }

Furthermore, an additional option to configure a compiler is to use the compiler::add_pass() method to man-
ually load compiler passes inside the program itself. To illustrate this interface, consider the following example:

from openql import openql as ql

c = ql.Compiler("testCompiler")

c.add_pass_alias("Writer", "outputIR")
c.add_pass("Reader")
c.add_pass("RotationOptimizer")
c.add_pass("DecomposeToffoli")
c.add_pass_alias("CliffordOptimize", "clifford_prescheduler")
c.add_pass("Scheduler")
c.add_pass_alias("CliffordOptimize", "clifford_postscheduler")
c.add_pass_alias("Writer","scheduledqasmwriter")

c.set_pass_option("ALL", "skip", "no");
c.set_pass_option("Reader", "write_qasm_files", "no")
c.set_pass_option("RotationOptimizer", "write_qasm_files", "no")
c.set_pass_option("outputIR", "write_qasm_files", "yes");
c.set_pass_option("scheduledqasmwriter", "write_qasm_files", "yes");
c.set_pass_option("ALL", "write_report_files", "no");

..... # definition of Platform and Program p

c.compile(p)

Note The code for the platform and the program creation as described earlier (for more information on
that, please see Creating your first program) has been removed for clarity purposes.

The example code shows that we can add a pass under its real name, which should be the exact pass name as defined
in the compiler (for a complete list available pass names, please consult Compiler Passes), or under an alias name to
be defined by the OpenQL user. This last name can be any string and should be used to set pass specific options. This
options setting is shown last, where current pass option choices represent either the “ALL” target or a given pass name
(either its alias or its real name). Curently, only the <write_qasm_files>, <write_report_files>, and <skip> options
are implemented for individual passes. The other options should be accessed through the global option settings of the
program.

Finally, to create and use a new compiler pass, the developer would need to implement three steps:

1) Inherit from the AbstractPass class and implement the following function

virtual void runOnProgram(ql::quantum_program *program)

2) Register the pass by giving it a pass name in

AbstractPass* PassManager::createPass(std::string passName, std::string aliasName)

3) Add it in a custom compiler configuration using the Compiler API

Currently, the following passes are available in the compiler class and can be enabled by using the following pass
identifiers to map to the existing passes.

216 Chapter 1. How to read the documentation

OpenQL

Pass Identifier Compiler Pass
Reader Program Reading (currently cQASMReader)
Writer Qasm Printer
RotationOptimizer Optimizer
DecomposeToffoli Decompose Toffoli
Scheduler Scheduling
BackendCompiler Composite pass calling either CC or CC-Light passes
ReportStatistics Report Statistics
CCLPrepCodeGeneration CC-Light dependent code generation preparation
CCLDecomposePreSchedule Decomposition before scheduling (CC-Light dependent)
WriteQuantumSim Print QuantumSim program
CliffordOptimize Clifford Optimization
Map Mapping
RCSchedule Resource Constraint Scheduling
LatencyCompensation Latency Compensation
InsertBufferDelays Insert Buffer Delays
CCLDecomposePostSchedule Decomposition before scheduling (CC-Light dependent)
QisaCodeGeneration QISA generation (CC-Light dependent)

1.28 Compiler Passes

Warning: This page has not been revised yet since modularization and refactoring, and may thus be out of date.

Most of the passes in their function and implementation are platform independent, deriving their platform dependent
information from options and/or the configuration file. This holds also for mapping, although one wouldn’t think so
first, since it is called from the platform dependent part of the compiler now. All passes like this are summarized below
first and are described extensively platform independently later in this section.

Note Some passes are called from the platform independent compiler, other ones from the back-end
compiler. That is a platform dependent issue and therefore described with the platform.

Their description includes:

• their API, including their name: in general, apart from their name, they take all parameters from the program
context which includes the configuration file and the platform, the options, and the vector of kernels with their
circuits

• the Intermediate Representation (IR) they expect as input and what they update in the IR; in general, they should
accept any IR, so all types of gates, quantum as well as classical

• the particular options they listen to; there usually is an option to disable it; also there are ways to dump the IR
before and/or after it although this is not generally possible yet

• the function they perform, in terms of the IR and the options

Other passes, of which the implementation (i.e. source code etc.) is platform dependent, can be found with the
platforms. An example of the latter passes is QISA (i.e. instruction) generation in CC-Light. In the lists below, these
passes are indicated to be platform dependent.

Passes have some general facilities available to them; these are not passes themselves since they don’t transform the
IR. Examples of such facilities are:

1.28. Compiler Passes 217

OpenQL

• ql::report::report_qasm(prog_name, kernels, platform, relplacename, passname):
Writing the IR out in an external representation (QASM 1.0) to a file when option write_qasm_files
has the value yes. The file is stored in the default output directory; the name of the file is composed from
the program name (prog_name), the place relative to the pass (relplacename), and the pass name
(passname), all separated by _, and the result suffixed by .qasm. The pass indicates before or after
which the IR is written to file. The place relative to the pass indicates e.g. in or out, meaning before
or after the pass, respectively. In this way, multiple qasm files can be written per compile, and be easily
related to the point in compilation where the writing was done.

• ql::report::report_bundles(prog_name, kernels, platform, relplacename, passname):
Identical to report_qasm but the QASM is written as bundles.

• ql::report::report_statistics(prog_name, kernels, platform, relplacename, passname, prefix):
Identical to report_qasm but the IR itself is not written but a summary of it, e.g. the number of kernels,
the numer of one-qubit, two-qubit and more-qubit gates, which qubits were used and which not, the wall
clock time that compilation took until this point, etc. This is done for each kernel separately and for
the whole program; additional interfaces are available for making the individual reports and adding pass
specific lines to the reports. The prefix string is prepended to each line in the report file, e.g. to make
it qasm comment. Furthermore the suffix is .report. And writing the report is only done when option
write_report_files has the value yes.

• ql::utils::write_file(filename, contentstring): Writing a content string to the file with
given filename in the default output directory for off-line inspection. An example is writing (in dot
format) the gate dependence graph which is a scheduling pass internal data structure. The writing to a file
of a string is a general facility but the generation of the string representation of the internal data structure
is pass dependent. The options controlling this are also pass specific.

Writing the IR out to a file in a form suitable for a particular subsequent tool such as quantumsim is considered code
generation for the quantumsim platform and is therefore considered a pass.

Note A compiler pass is not something defined in OpenQL. It should be. Passes then have a standard API,
standard intermediate representation dumpers before and after them, a standard way to include them
in the compiler. We could have the list of passes to call be something defined in the configuration
file, perhaps with the places where we want to have dumps and reports.

1.28.1 Summary of compiler passes

Compiler passes in OpenQL are the compiler elements that, when called one after the other, gradually transform the
OpenQL input program to some platform defined output program. The following passes are available and usually
called in this order. More detailed information on each can be found in the sections below.

When it is indicated that a pass is CC-Light (or any other platform) dependent, it means that its implementation with
respect to source code is platform dependent. A pass of which the source code is platform independent, can behave
platform dependently by its parameterization by the platform configuration file.

• program reading not a real pass now; it covers the code that for a particular program sets its options, con-
nects it to a platform, defines its program parameters such as number of qubits, defines its kernels, and
defines its gates; in the current OpenQL implementation this is all code upto and including the call to
p.compile(). See Input external representation and Creating your first program.

• optimize attempts to find contigous sequences of quantum gates that are equivalent to identity (within some
small epsilon which currently is 10 to the power -4) and then take those sequences out of the circuit; this
relies on the function of each gate to be defined in its mat field as a matrix. See optimization.

• decompose_toffoli each toffoli gate in the IR is replaced by a gate sequence with at most two-qubit gates;
depending on the value of the equally named option; it does this in the Neilsen and Chuang way (NC), or
in the way as in https://arxiv.org/pdf/1210.0974,pdf (AM). See decomposition.

218 Chapter 1. How to read the documentation

https://arxiv.org/pdf/1210.0974,pdf

OpenQL

• unitary decomposition the unitary decomposition pass is not generally available yet; it is in some private
OpenQL branch. See decomposition.

• scheduling of each kernel’s circuit the gates are scheduled at a particular cycle starting from 0 (by filling in
the gate’s cycle attribute) that matches the gates’ dependences, their duration, the constraints imposed
by their resource use, the buffer values defined for the platform, and the latency value defined for each
gate; multiple gates may start in the same cycle; in the resulting circuits (which are vectors of pointers
to gate) the gates are ordered by their cycle value. The schedulers also produce a bundled version of
each circuit: the circuit is then represented by a vector of bundles in which each bundle lists the gates
that are to be started in the same cycle; each bundle further contains sublists that combines gates with
the same operation but with different operands. The resource-constrained and non-constrained versions of
the scheduler have different entry points (currently). The latter only considers the gates’ dependences and
their duration, which is sufficient as input to QX. Next to the above necessary constraints, the remaining
freedom is defined by a scheduling strategy which is defined by the scheduler option value: ASAP,
ALAP and some other options. See scheduling.

• decomposition before scheduling (CC-Light dependent) classical non-primitive gates are decomposed to
primitives (e.g. eq is transformed to cmp followed by an empty cycle and an fbr_eq); after measure-
ments an fmr is inserted provided the measurement had a classical register operand. See decomposition.

• clifford optimization dependency chains of one-qubit clifford gates operating on the same qubit are replaced
by equivalent sequences of primitive gates when the latter leads to a shorter execution time. Clifford
gates are recognized by their name and use is made of the property that clifford gates form a group of 24
elements. Clifford optimization is called before and after the mapping pass. See optimization.

• mapping the circuits of all kernels are transformed such that for any two-qubit gate the operand qubits are
connected (are NN, Nearest Neighbor) in the platform’s topology; this is done by a kernel-level initial
placement pass and when it fails, by a subsequent heuristic; the heuristic essentially transforms each circuit
from start to end; doing this, it maintains a map from virtual (program) qubits to real qubits (v2r); each
time that it encounters a two-qubit gate that in the current map is not NN, it inserts swap gates before this
gate that gradually make the operand qubits NN; when inserting a swap, it updates the v2r map accordingly.
There are many refinements to this algorithm that can be controlled through options and the configuration
file. It is not complete in the sense that it ignores transfer of the v2r map between kernels. See mapping.

• rcscheduler resource constraints are taken into account; the result reflects the timing required during execution,
i.e. also taking into account any further non-OpenQL passes and run-time stages such as (for CC_Light):

– QISA assembly

– classical code execution (from here on these passes are executed as run-time stages)

– quantum microcode generation

– micro operation to signal and microwave conversion

– execution unit reprogramming and inter operation reset times

– signal communication line delays

– execution time and feed-back delays

The resulting circuit is stored in the usual manner and as a sequence of bundles. See scheduling.

• decomposition after scheduling (CC-Light dependent) two-qubit flux gates are decomposed to a series of
one-qubit flux gates of the form sqf q0 to be executed in the same cycle; this is done only when the
cz_mode option has the value auto; such a gate is generated for each operand and for all qubits that
need to be detuned; see the detuned_qubits resource description in the CC-Light platform configuration
file for details. See decomposition.

• opcode and control store file generation (CC-Light dependent) currently disabled as not used by CC-Light

• write_quantumsim_program writes the current IR as a python script that interfaces with quantumsim

1.28. Compiler Passes 219

OpenQL

• write_qsoverlay_program writes the current IR as a python script that interfaces with the qsoverlay module
of quantumsim

• QISA generation (CC-Light dependent)

– bundle to QISA translation

* deterministic sorting of gates per bundle

* instruction prefix and wait instruction insertion

* classical gate to QISA classical instruction translation

* SOMQ generation and mask to mask register assignment (should include mask instruction
generation)

* insertion of wait states between meas and fmr (should be done by scheduler)

– mask instruction generation

– QISA file writing

See Platforms and architectures.

1.28.2 Decomposition

Decomposition of gates [TBD]

Control decomposition

Entry points

The following entry points are supported:

• entry() TBD

Input and output intermediate representation

TBD.

Options

The following options are supported:

• option TBD

220 Chapter 1. How to read the documentation

OpenQL

Function

TBD

Unitary decomposition

Unitary decomposition allows a developer of quantum algorithms to specify a quantum gate as a unitary matrix, which
is then split into a circuit consisting of ry, rz and cnot gates.

To use it, define a Unitary with a name and a (complex) list containing all the values in the unitary matrix in order
from the top left to the bottom right. The matrix needs to be unitary to be a valid quantum gate, otherwise an error will
be raised by the compilation step.

Name operands C++ type example
Unitary name string “U_name”

unitary matrix vector<complex<double>> [0.5+0.5j,0.5-0.5j,0.5-0.5j,0.5+0.5j]

The unitary is first decomposed, by calling the .decompose() function on it. Only then can it be added to the kernel
as a normal gate to the number of qubits corresponding to the unitary matrix size. This looks like:

u1 = ql.Unitary("U_name", [0.5+0.5j,0.5-0.5j,0.5-0.5j,0.5+0.5j])
u1.decompose()
k.gate(u1, [0])

Which generates this circuit:

rz q[0], -1.570796
ry q[0], -1.570796
rz q[0], 1.570796

The circuit generated might also have different angles, though not different gates, and result in the same effect on the
qubits, this is because a matrix can have multiple valid decompositions.

For a two-qubit unitary gate or matrix, it looks like:

list_matrix = [1, 0 , 0 , 0,
0, 0.5+0.5j, 0.5-0.5j, 0,
0, 0.5-0.5j, 0.5+0.5j, 0,
0, 0 , 0 , 1]

u1 = ql.Unitary("U_name", list_matrix)
u1.decompose()
k.gate(u1, [0,1])

This generates a circuit of 24 gates of which 6 cnots, spanning qubits 0 and 1. The rest are ry and rz gates on both
qubits, which looks like this:

rz q[0], -0.785398
ry q[0], -1.570796
rz q[0], -3.926991
rz q[1], -0.785398
cnot q[0],q[1]
rz q[1], 1.570796
cnot q[0],q[1]
rz q[0], 2.356194
ry q[0], -1.570796

(continues on next page)

1.28. Compiler Passes 221

OpenQL

(continued from previous page)

rz q[0], -3.926991
ry q[1], 0.785398
cnot q[0],q[1]
ry q[1], 0.785398
cnot q[0],q[1]
rz q[0], -0.000000
ry q[0], -1.570796
rz q[0], 3.926991
rz q[1], 0.785398
cnot q[0],q[1]
rz q[1], -1.570796
cnot q[0],q[1]
rz q[0], 3.926991
ry q[0], -1.570796
rz q[0], -2.356194

The unitary gate has no limit in how many qubits it can apply to. But the matrix size for an n-qubit gate scales as
2^n*2^n, which means the number of elements in the matrix scales with 4^n. This is also the scaling rate of the
execution time of the decomposition algorithm and of the number of gates generated in the circuit. Caution is advised
for decomposing large matrices both for compilation time and for the size of the resulting quantum circuit.

More detailed information can be found at http://resolver.tudelft.nl/uuid:9c60d13d-4f42-4d8b-bc23-5de92d7b9600

Decomposition before scheduling

Entry points

The following entry points are supported:

• entry() TBD

Input and output intermediate representation

TBD.

Options

The following options are supported:

• option TBD

Function

TBD

222 Chapter 1. How to read the documentation

http://resolver.tudelft.nl/uuid:9c60d13d-4f42-4d8b-bc23-5de92d7b9600

OpenQL

Decomposition after scheduling

Entry points

The following entry points are supported:

• entry() TBD

Input and output intermediate representation

TBD.

Options

The following options are supported:

• option TBD

Function

TBD

Decompose_toffoli

Entry points

The following entry points are supported:

• entry() TBD

Input and output intermediate representation

TBD.

Options

The following options are supported:

• option TBD

1.28. Compiler Passes 223

OpenQL

Function

TBD

1.28.3 Optimization

Optimization of circuits [TBD]

Optimize

attempts to find contigous sequences of quantum gates that are equivalent to identity (within some small epsilon which
currently is 10 to the power -4) and then take those sequences out of the circuit; this relies on the function of each gate
to be defined in its mat field as a matrix.

Entry points

The following entry points are supported:

• entry() TBD

Input and output intermediate representation

TBD.

Options

The following options are supported:

• option TBD

Function

TBD

Clifford optimization

dependency chains of one-qubit clifford gates operating on the same qubit are replaced by equivalent sequences of
primitive gates when the latter leads to a shorter execution time. Clifford gates are recognized by their name and use
is made of the property that clifford gates form a group of 24 elements. Clifford optimization is called before and after
the mapping pass.

224 Chapter 1. How to read the documentation

OpenQL

Entry points

The following entry points are supported:

• entry() TBD

Input and output intermediate representation

TBD.

Options

The following options are supported:

• option TBD

Function

TBD

1.28.4 Scheduling

Of each kernel’s circuit the gates are scheduled at a particular cycle starting from 0 (by filling in the gate’s cycle
attribute) that matches the gates’ dependences, their duration, the constraints imposed by their resource use, the buffer
values defined for the platform, and the latency value defined for each gate; multiple gates may start in the same
cycle; in the resulting circuits (which are vectors of pointers to gate) the gates are ordered by their cycle value. The
schedulers also produce a bundled version of each circuit; see Circuits and bundles in the internal representation.

The resource-constrained and non-constrained versions of the scheduler have different entry points (currently). The
latter only considers the gates’ dependences and their duration, which is sufficient as input to QX. Next to the above
necessary constraints, the remaining freedom is defined by a scheduling strategy which is defined by the scheduler
option value: ASAP, ALAP and some other options.

Entry points

The following two entry points are supported, one for the non-constrained and one for the resource-constrained sched-
uler:

• p.schedule() In the context of program object p, this method schedules the circuits of the kernels of the
program, according to a strategy specified by the scheduling options, but without taking resource constraints,
buffers and latency compensation of the platform into account.

• bundles = cc_light_schedule_rc(circuit, platform, num_qubits, num_creg) In
the context of the cc_light_eqasm_compiler, a derived class of the eqasm_compiler class, in its
compile(prog_name, kernels, platform) method, inside a loop over the specified kernels, the
resource-constrained scheduler is called to schedule the specified circuit, according to a strategy specified by
the scheduling options, and taking resource constraints, buffers and latency compensation of the platform into
account. It creates a bundled version of the IR and returns it.

Note These entry points need to be harmonized to fit in the generalized pass model: same class, program-
level interface, no result except in IR, buffer and latency compensation split off to separate passes.

The above entry points each create a sched object of class Scheduler and call a selection of its methods:

1.28. Compiler Passes 225

OpenQL

• sched.init(circuit, platform, num_qubits, num_creg) A dependence graph representa-
tion of the specified circuit is constructed. This graph is a Directed Acyclic Graph (DAG). In this graph, the
nodes represent the gates and the directed edges the dependences. The top of the graph is a newly created
SOURCE gate, the bottom is a newly created SINK gate. With respect to dependences, the SOURCE and SINK
gates behave as if they update all qubits and classical registers with 0 duration. Gates are added in the order of
presence in the circuit and linked in dependence chains according to their operation and operands.

The nodes have as attributes (apart from the gate’s attributes):

– name with the qasm string representation of the gate (such as cnot q[1],q[2])

The edges have as attributes:

– weight representing the number of cycles needed from the start of execution of the gate at the source
of the edge, to the start of execution of the gate at the target of the edge; this value is initialized from the
duration attribute of the gate

– cause representing the qubit or classical register causing the dependence

– depType representing the type of the dependence

The latter two attributes are currently only used internally in the dependence graph construction.

This sched.init method is called by both entry points for each circuit of the program.

• bundles = sched.schedule_asap(sched_dot) The cycle attributes of the gates are initialized con-
sistent with an ASAP (i.e. downward) walk over the dependence graph. Subsequently, the gates in the circuit
are sorted by their cycle value; and the bundler called to produce a bundled version of the IR to return.

This method is called by p.schedule() for each circuit of the program when non-uniform ASAP scheduling.

• bundles = sched.schedule_alap(sched_dot) The cycle attributes of the gates are initialized con-
sistent with an ALAP (i.e. upward) walk over the dependence graph. Subsequently, the gates in the circuit are
sorted by their cycle value; and the bundler called to produce a bundled version of the IR to return.

This method is called by p.schedule() for each circuit of the program when non-uniform ALAP scheduling.

• bundles = sched.schedule_alap_uniform() The cycle attributes of the gates are initialized con-
sistent with a uniform ALAP schedule: this modified ALAP schedule aims to have an equal number of gates
starting in each non-empty bundle. Subsequently, the gates in the circuit are sorted by their cycle value; and the
bundler called to produce a bundled version of the IR to return.

This method is called by p.schedule() for each circuit of the program when uniform and ALAP scheduling.

• bundles = sched.schedule_asap(resource_manager, platform, sched_dot)

This method is called by cc_light_schedule_rc after calling sched.init, and creation of the resource
manager for each circuit of the program when non-uniform ASAP scheduling. See scheduling_function for a
more extensive description.

• bundles = sched.schedule_alap(resource_manager, platform, sched_dot)

This method is called by cc_light_schedule_rc after calling sched.init, and creation of the resource
manager for each circuit of the program when non-uniform ALAP scheduling. See scheduling_function for a
more extensive description.

In the sched_dot parameter of the methods above a dot representation of the dependence graph of the kernel’s
circuit is constructed, in which the gates are ordered along a timeline according to their cycle attribute.

226 Chapter 1. How to read the documentation

OpenQL

Input and output intermediate representation

The schedulers expect kernels with or without a circuit. When with a circuit, the cycle attribute need not be
valid. Gates that are supported on input are one-qubit measure, no-operand display, any classical gate, cnot,
cz/cphase, and any other quantum and scheduling gate.

They produce a circuit with the same gates (but potentially differently ordered). The cycle attribute of each gate has
been defined. The gates in the circuit are ordered with non-decreasing cycle value. The cycle values are consistent
with all constraints imposed during scheduling and with the scheduling strategy that has been specified through the
options or by selection of the entry point.

Note There are no gates for control flow; so these are not defined in the configuration file; these are not
scheduled in the usual way; these are not translated to QASM and external representations in the
usual way. See Kernel.

Options

The following options are supported:

• scheduler With the value ASAP, the scheduler creates a forward As Soon As Possible schedule of the circuit.
With the value ALAP, the scheduler creates a backward As Soon As Possible schedule which is equivalent to a
forward As Late As Possible schedule of the circuit. Default value is ALAP.

• scheduler_uniform With the value yes, the scheduler creates a uniform schedule of the circuit. With the
value no, it doesn’t. Default value is no.

• scheduler_commute With the value yes, the scheduler exploits commutation rules for cnot, and
cz/cphase to have more scheduling freedom to aim for a shorter latency circuit. With the value no, it doesn’t.
Default value is no.

• output_dir The value is the name of the directory which should be present in the current directory during
execution of OpenQL, where all output and report files of OpenQL are created. Default value is test_output.

• write_qasm_files When it has the value yes, p.schedule produces in the output directory a bundled
QASM (see Output external representation) of all kernels in a single file with as name the name of the program
followed by _scheduled.qasm.

• print_dot_graphs When it has the value yes, p.schedule produces in the output directory in multiple
files each with as name the name of the kernel followed by _dependence_graph.dot a dot representation
of the dependence graph of the kernel’s circuit. Furthermore it produces in the output directory in multiple files
each with as name the name of the kernel followed by the value of the scheduler option and _scheduled.
dot a dot representation of the dependence graph of the kernel’s circuit, in which the gates are ordered along
a timeline according to their cycle attribute.

Note The options don’t discriminate between the prescheduler and the rcscheduler although these could
desire different option values. Also there is not an option to skip this pass.

Function

Scheduling of a circuit starts with creation of the dependence graph; see scheduling_entry_points for its definition.

Gates that are supported on input are one-qubit measure, no-operand display, any classical gate, cnot,
cz/cphase, and any other quantum and scheduling gate. With respect to dependence creation, the latter ones are
assumed to use and update each of their operands during the operation; and the former ones each have a specific
definition regarding the use and update of their operands:

• measure also updates its corresponding classical register;

1.28. Compiler Passes 227

OpenQL

• display and the classical gates use/update all qubits and classical registers (so these act as barriers);

• cnot uses and doesn’t update its control operand, and it commutes with cnot/cz/cphase with equal control
operand; cnot uses and updates its target operand, it commutes with cnot with equal target operand;

• cz/cphase commutes with cnot/cz/cphase with equal first operand, and it commutes with cz/cphase
with equal second operand. This commutation is exploited to aim for a shorter latency circuit when the
scheduler_commute option is in effect.

When scheduling without resource constraints the cycle attributes of the gates are initialized consistent with an ASAP
(i.e. downward/forward) or ALAP (i.e. upward/backward) walk over the dependence graph. Subsequently, the gates
in the circuit are sorted by their cycle value; and the bundler called to produce a bundled version of the IR to return.

The remaining part of this subsection describes scheduling with resource constraints.

The implementation of this list scheduler is parameterized on doing a forward or a backward schedule. The former is
used to create an ASAP schedule and the latter is used to create an ALAP schedule. We here describe the forward case
because that is easier to grasp and later come back on the backward case.

A list scheduler maintains at each moment a list of gates that are available for being scheduled because they are not
blocked by dependences on non-scheduled gates. Not all gates that are available (not blocked by dependences on
non-scheduled gates) can actually be scheduled. It must be made sure in addition that those scheduled gates that it
depends on, actually have completed their execution (using its duration) and that the resources are available for
it. Furthermore, making a selection from the gates that remain after ignoring these, determines the optimality of the
scheduling result. The implemented list scheduler is a critical path scheduler, i.e. it prefers to schedule the most
critical gate first. The criticality of a gate estimates the effect that delaying scheduling the gate has on the latency of
the resulting circuit, and is determined by computing the length of the longest dependence chain from the gate to the
SINK gate; the higher this value, the higher the gate’s scheduling priority in the current cycle is.

The scheduler relies on the dependence graph representation of the circuit. At the start only the SOURCE gate is
available. Then one by one, according to a criterion, a gate is selected from the list of available ones and added to the
schedule. Having scheduled the gate, it is taken out of the available list; after having scheduled a gate, some new gates
may become available because they don’t depend on non-scheduled gates anymore; those gates are found and put in
the available list of gates. This continues, filling cycle by cycle from low to high, until the available list gets empty
(which happens after scheduling the last gate, the SINK gate).

Above it was mentioned that a gate can only be scheduled in a particular cycle when the resources are available for it.
In this, the scheduler relies on the resource manager of the platform. The latter was created and initialized from the
platform configuration file before scheduling started. Please refer to cclplatform for a description of the specification
of resources of the CC-Light platform. And furthermore note that only the resources that are specified in the platform
configuration file determine the resource constraints that apply to the scheduler; recall that for each resource type,
several resources can be specified, each of which typically has some kind of exclusive use. The simplest one is the
qubits resource type of which there are as many resources as there are qubits. The resource manager maintains a so-
called machine state that describes the occupation status of each resource. This resource state typically consists
of two elements: the operation type that is using this resource; and the occupation period, which is described by a pair
of cycle values, representing the first cycle that it is occupied, and the first cycle that it is free again, respectively.

If a gate is to be scheduled at cycle t, then all the resources for executing the gate are checked to be available from
cycle t till (and not including) t plus the gate’s duration in cycles; and when actually committing to scheduling
the gate at cycle t, all its resources are set to occupied for the duration of its execution. The resource manager
offers methods for this check (bool rm.available()) and commit (rm.reserve()). Doing this check and
committing for a particular gate, some additional gate attributes may be required by the resource manager. For the
CC-Light resource manager, these additional gate attributes are:

• operation_name initialized from the configuration file cc_light_instr gate attribute representing the
operation of the gate; it is used by the qwgs resource type only; two gates having the same operation_name
are assumed to use the same wave form

228 Chapter 1. How to read the documentation

OpenQL

• operation_type initialized from the configuration file type gate attribute representing the kind of opera-
tion of the gate: mw for rotation gates, readout for measurement gates, and flux for one and two-qubit flux
gates; it is used by each resource type

This concludes the description of the involvement of the resource manager in the scheduling of a gate.

The list scheduler algorithm uses a so-called availability list to represent gates that can be scheduled; see above. When
the available list becomes empty, all cycle values were assigned and scheduling is almost done. The gates in the circuit
are then first sorted on their cycle value.

Then latency compensation is done: for each gate for which in the platform configuration file a latency attribute
value is specified, the gate’s cycle value is incremented by this latency value converted to cycles; the latter is usually
negative. This mechanism allows to start execution of a gate earlier to compensate for a relative delay in the control
electronics that is involved in executing the gate. So in theory, in the quantum hardware, gates which before latency
compensation had the same cycle value, also execute in the same cycle. After this, the gates in the circuit are again
sorted on their cycle value.

After the bundler has been called to produce a bundled IR, any buffer delays are inserted. Buffer delays can be
specified in the platform configuration file in the hardware_settings section. Insertion makes use of the type
attribute of the gate in the platform configuration file, the one which can have the values mw, readout and flux.
For each bundle, it checks for each gate in the bundle, whether there is a non-zero buffer delay specified with a gate
in the previous bundle, and if any, takes the maximum of those buffer delays, and adds it (converted to cycles) to the
bundle’s start_cycle attribute. Moreover, when the previous bundle got shifted in time because of earlier bundle
delays, the same shift is applied first to the current bundle. In this way, the schedule gets stretched for all qubits at the
same time. This is a valid thing to do and doesn’t invalidate dependences nor resource constraints.

Note Buffer insertion only has effect on the start_cycle attributes of the bundles and not on the
cycle attributes of the gates. It would be better to do buffer insertion on the circuit and to do
bundling afterwards, so that circuit and bundles are consistent.

In the backward case, the scheduler traverses the dependence graph bottom-up, scheduling the SINK gate first. Gates
become available for scheduling at a particular cycle when at that cycle plus its duration all its dependent gates have
started execution. And scheduling finishes when the available list is empty, after having scheduled the SOURCE gate.
In this, cycles are decremented after having scheduled SINK at some very high cycle value, and later, after having
scheduled SOURCE, the cycle values of the gates are consistently shifted down so that SOURCE starts at cycle 0. The
resource manager’s state and methods also are parameterized on the scheduling direction.

Scheduling for software platforms

• Scheduling for qx

• Scheduling for quantumsim

Scheduling for hardware platforms

• Scheduling for CC-Light platform

• Scheduling for CC platform

• Scheduling for CBox platform

1.28. Compiler Passes 229

OpenQL

1.28.5 Mapping

The circuits of all kernels are transformed such that after mapping for any two-qubit gate the operand qubits are
connected (are NN, Nearest Neighbor) in the platform’s topology; this is done by a kernel-level initial placement and
when it fails, by subsequent heuristic routing and mapping. Both maintain a map from virtual (program) qubits to real
qubits (v2r) and a map from each real qubit index to its state (rs); both are available after each of the two mapping
subpasses.

• initial placement This module attempts to find a single mapping of the virtual qubits of a circuit to the real qubits
(v2r map) of the platform’s qubit topology, that minimizes the sum of the distances between the two mapped
operands of all two-qubit gates in the circuit. The distance between two real qubits is the minimum number
of swaps that is required to move the state of one of the two qubits to the other. It employs a Mixed Integer
Linear Programming (MIP) algorithm to solve the initial placement that is modelled as a Quadratic Assignment
Problem. The module can find a mapping that is optimal for the whole circuit, but because its time-complexity
is exponential with respect to the size of the circuit, this may take quite some computer time. Also, the result is
only really useful when in the mapping found all mapped operands of two-qubit gates are NN. So, there is no
guarantee for success: it may take too long and the result may not be optimal.

• heuristic routing and mapping This module essentially transforms each circuit in a linear scan over the circuit,
from start to end, maintaining the v2r and rs maps. Each time that it encounters a two-qubit gate that in the
current map is not NN, it inserts swap gates before this gate that make the operand qubits NN (this is called
routing the qubits); when inserting a swap, it updates the v2r and rs maps accordingly. There are many
refinements to this algorithm that can be controlled through options and the configuration file. The module will
find the minimum number of swaps to make the mapped operands of each two-qubit gate NN in the mapping that
applies just before it. In the most basic version, it has a linear time-complexity with respect to circuit size and
number of qubits. With advanced search options set, the algorithm may become cubic with respect to number
of qubits. So, it is still scalable and is guaranteed to find a solution.

The implementation is not complete:

• In the presence of multiple kernels with control flow among them, the v2r at the start of each kernel must
match the v2r at the end of all predecessor kernels: this is not implemented. Instead, the v2r at the start of
each kernel is re-initialized freshly, independently of the v2r at the end of predecessor kernels. The current
implementation thus assumes that at the end of each kernel all qubits don’t hold a state that must be preserved
for a subsequent kernel.

Entry points

Mapping is implemented by a class Mapperwith the support of many private other classes among which the scheduler
class for obtaining the dependence graph. The following entry points are supported:

• Mapper() Constructs a new mapper to be used for the whole program. Initialization is left to the Init
method.

• Mapper.Init(platform) Initialize the mapper for the given platform but independently of a particular
kernel and circuit. This includes checking and initializing the mapper’s representation of the platform’s topology
from the platform’s configuration file.

• Mapper.Map(kernel) Perform mapping on the kernel, i.e. replace the kernel’s circuit by an equivalent but
mapped circuit. Each kernel is mapped independently of any other kernel. Of each gate the cycle attribute is
assigned, and the resulting circuit is scheduled; which constraints are obeyed in this schedule depends on the
mapping strategy (the value of the mapper attribute). In the argument kernel object, the qubit_count
attribute is updated from the number of virtual qubits of the kernel to the number of real qubits as specified by
the platform; this is done because in the mapped circuit the qubit operands of all gates will be real qubit indices
of which the values should be in the range of the valid real qubit indices of the platform.

230 Chapter 1. How to read the documentation

OpenQL

Furthermore, some reporting of internal mapper statistics is done into attributes of the Mapper object. These
can be retrieved by the caller of Map:

– nswapsadded Number of swaps and moves inserted.

– nmovesadded Number of moves inserted.

– v2r_in Vector with for each virtual qubit index its mapping to a real qubit index (or
UNDEFINED_QUBIT represented by INT_MAX, indicating that the virtual qubit index is not mapped
to a real qubit), after initialization and before initial placement and/or heuristic routing and mapping.

– rs_in Vector with for each real qubit index its state. This vector shows the state after initialization of the
mapper and before initial placement and/or heuristic routing and mapping. State values can be:

* rs_nostate: no statically known quantum state and no dynamically useful quantum state to pre-
serve

* rs_wasinited: known to be in zero base state (|0>)

* rs_hasstate: useful but statically unknown quantum state; must be preserved

– v2r_ip Vector with for each virtual qubit index its mapping to a real qubit index (or
UNDEFINED_QUBIT represented by INT_MAX, indicating that the virtual qubit index is not mapped
to a real qubit), after initial placement but before heuristic routing and mapping.

– rs_ip Vector with for each real qubit index its state (see rs_in above for the values), after initial
placement but before heuristic routing and mapping.

– v2r_out Vector with for each virtual qubit index its mapping to a real qubit index (or
UNDEFINED_QUBIT represented by INT_MAX, indicating that the virtual qubit index is not mapped
to a real qubit), after heuristic routing and mapping.

– rs_out Vector with for each real qubit index its state (see rs_in above for the values), after heuristic
routing and mapping.

Input and output intermediate representation

The mapper expects kernels with or without a circuit. When with a circuit, the cycle attributes of the gates need not
be valid. Gates that are supported on input are one-qubit measure, no-operand display, any classical gate, cnot,
cz/cphase, and any other quantum and scheduling gate. The mapper refuses multi-qubit quantum gates as input
with more than two quantum operands.

The mapper produces a circuit with the same gates but then mapped (see below), with the real qubit operands of two-
qubit gates made nearest-neighbor in the platform’s topology, and with additional quantum gates inserted to implement
the swapping or moving of qubit states. The mapping of any (quantum, classical, etc.) gate entails replacing the virtual
qubit operand indices by the real qubit operand indices corresponding to the mapping of virtual to real qubit indices
applicable at the time of execution of the gate; furthermore the gate itself (when a quantum gate) is optionally replaced
at the time of its mapping by one or more gates as specified by the platform’s configuration file: if the configuration
file contains a definition for a gate with the name of the original gate with _real appended, then that one is created
and replaces the original gate. Note that when this created gate is defined in the gate_decomposition section,
the net effect is that the specified decomposition is done. When a swap or move gate is created to be inserted in the
circuit, first a swap_real (or move_real) is attempted to be created instead before creating a swap or move; this
also allows the gate to be decomposed to more primitive gates during mapping.

When a kernel’s circuit has been mapped, an optional final decomposition of the mapped gates is done: each gate is
optionally replaced by one or more gates as specified by the platform’s configuration file, by creating a gate with the
name of the original gate with _prim appended, if defined in the configuration file, and replacing the original gate by
it. Note that when this created gate is specified in the configuration file in the gate_decomposition section, the
net effect is that the specified decomposition is done. When in the mapped circuit, swap or move gates were inserted

1.28. Compiler Passes 231

OpenQL

and swap_prim or move_prim are specified in the configuration file, these are also used to replace the swap or
move at this time.

The cycle attribute of each gate is assigned a valid value. The gates in the circuit are ordered with non-decreasing
cycle value. The cycle values are consistent with the constraints that are imposed during mapping; these are specified
by the mapper option.

The above implies that non-quantum gates are accepted on input and are passed unchanged to output.

Options and Function

The options and corresponding function of the mapper are described.

The options include the proper mapper options and a few scheduler options. The subset of the scheduler options
applies because the mapper uses the dependence graph created by the initialization method of the scheduler. Also see
scheduling_options.

Most if not all options can be combined to compose a favorite mapping strategy, i.e. the options are largely indepen-
dent.

With the options, also the effects that they have on the function of the mapper are described.

The options and function are described in the order of their virtual encountering by a particular gate that is mapped.
Please remember that heuristic routing and mapping essentially performs a linear scan over the gates of the circuit to
route the qubits, map and transform the gates.

Initialization and configuration

The Init method initializes the mapper for the given platform but independently of a particular kernel and circuit.
This includes sanity checking and initializing the mapper’s representation of the platform’s topology from the plat-
form’s configuration file; see Configuration_file_definitions_for_mapper_control for the description of the platform’s
topology.

The topology’s edges define the neighborhood/connection map of the real qubits. Floyd-Warshall is used to compute
a distance matrix that contains for each real qubit pair the shortest distance between them. This makes the mapper
applicable to arbitrary formed connection graphs but at the same time less scalable in number of qubits. For NISQ
systems this is no problem. For larger and more regular connection grids, the implementation contains a provision to
replace this by a distance function.

Subsequently, Map is called for each kernel/circuit in the program. It will attempt initial placement and then heuristic
routing and mapping. Before anything else, for each kernel again, the v2r and rs are initialized, each under control
of an option:

• mapinitone2one: Definition of the initialization of the v2r map at the start of the mapping of each kernel;
this v2r will apply at the start of initial placement.

– no: there is no initial mapping of virtual to real qubits; each virtual qubit is allocated to the first free real
qubit on the fly, when it is mapped

– yes (default for back-ward compatibility): the initial mapping is 1 to 1: a virtual qubit with index qi is
mapped to its real qi counterpart (so: same index)

• mapassumezeroinitstate: Definition of the initialization of the rs map at the start of the mapping of
each kernel; this rs will apply at the start of initial placement. Values can be: rs_nostate (no useful state),
rs_wasinited (zero state), and rs_hasstate (useful but unknown state).

– no (default for back-ward compatibility): each real qubit is assumed not to contain any useful state nor is
it known that it is in a particular base state; this corresponds to the state with value rs_nostate.

232 Chapter 1. How to read the documentation

OpenQL

– yes (best): each real qubit is assumed to be in a zero state (e.g. |0>) that allows a swap with it to be
replaced by a (cheaper) move; this corresponds to the state with value rs_wasinited.

Initial Placement

After initialization and configuration, initial placement is started. See the start of mapping of a description of initial
placement. Since initial placement may take a lot of computer time, provisions have been implemented to time it out;
this comes in use during benchmark runs. Initial placement is run under the control of two options:

• initialplace: Definition of initial placement operation. Initial placement, when run, may be 100% suc-
cessful (all two-qubit gates were made NN); be moderately successful (not all two-qubit gates were made NN,
only some) or fail to find a solution:

– no (default): no initial placement is attempted

– yes (best, optimal result): do initial placement starting from the initial v2r mapping; since initial place-
ment employs an Integer Linear Programming model as the base of implementation, finding an initial
placement may take quite a while.

– 1s, 10s, 1m, 10m, 1h (best, limit time, still a result): put a soft time limit on the execution time
of initial placement; do initial placement as with yes but limit execution time to the indicated maximum
(one second, 10 seconds, one minute, etc.); when it is not successfull in this time, it fails, and subsequently
heuristic routing and mapping is started, which cannot fail.

– 1sx, 10sx, 1mx, 10mx, 1hx: put a hard time limit on the execution time of initial placement; do
initial placement as with yes but limit execution time to the indicated maximum (one second, 10 seconds,
one minute, etc.); when it is not successfull in this time, it fails, and subsequently the compiler fails as
well.

• initialplace2qhorizon: The initial placement algorithm considers only a specified number of two-qubit
gates from the start of the circuit (a horizon) to determine a mapping. This limits computer time but also may
make a suboptimal result more useful. Option values are:

– 0 (default, optimal result): When 0 is specified as option value, there is no limit; all two-qubit gates of the
circuit are taken into account.

– 10, 20, 30, 40, 50, 60, 70, 80, 90, 100: The initial placement algorithm considers
only this number of initial two-qubit gates in the circuit to determine a mapping.

Best result would be obtained by running initial placement optionally twice (this is not implemented):

• Once with a modified model in which only the result with all two-qubit gates NN is successful. When it succeeds,
mapping has completed. Depending on the resources one wants to spend on this, a soft time limit could be set.

• Otherwise, attempt to get a good starting mapping by running initial placement with a soft time limit (of e.g. 1
minute) and with a two-qubit horizon (of e.g. 10 to 20 gates). What ever the result is, run heuristic routing and
mapping afterwards.

This concludes initial placement. The v2r and rs at this time are stored in attributes for retrieval by the caller of the
Map method. See mapping_input_and_output_intermediate_representation.

1.28. Compiler Passes 233

OpenQL

Heuristic Routing and Mapping

Subsequently heuristic routing and mapping starts for the kernel given in the Map method call.

• The scheduler’s dependence graph is used to feed heuristic routing and mapping with gates to map and to look-
ahead: see mapping_dependence_graph.

• To map a non-NN two-qubit gate, various routing alternatives, to be implemented by swap/move sequences,
are generated: see mapping_generating_routing_alternatives.

• Depending on the metric chosen, the alternatives are evaluated: see mapping_comparing_alternatives.

• When minimizing circuit latency extension, ILP is maximized by maintaining a scheduled circuit representation:
see mapping_look_back.

• Looking farther ahead beyond the mapping of the current two-qubit gate, the router recurses considering the
effects of its mapping on subsequent two-qubit gates: see mapping_looking_farther_ahead.

• Finally, the evaluations of the alternatives are compared, the best one selected and the two-qubit gate routed and
mapped: see mapping_deciding_for_the_best.

Dependence Graph and Look-Ahead, Which Gate(s) To Map Next

The mapper optionally uses the dependence graph representation of the circuit to enlarge the number of alternatives it
can consider, and to make use of the criticality of gates in the decision which one to map next. To this end, it calls the
scheduler’s init method, and sets up the availability list of gates as set of gates to choose from which one to map
next: initially it contains just the SOURCE gates. See scheduling, and below for more information on the availability
list’s properties. The mapper listens to the following scheduler options:

• scheduler_commute: Because the mapper uses the dependence graph that is also generated for the sched-
uler, the alternatives that are made available by commutation of czs/cnots, can be made available to the
mapper:

– no (default for backward-compatibility): don’t allow two-qubit gates to commute (cz/cnot) in the de-
pendence graph; they are kept in original circuit order and presented to the mapper in this order

– yes (best): allow commutation of two-qubit cz/cnot gates; e.g. when one isn’t nearest-neighbor but
one that comes later in the circuit but commutes with the earlier one is NN now, allow the later one to be
mapped before the earlier one

• print_dot_graphs: When it has the value yes, the mapper produces in the output directory in multiple
files each with as name the name of the kernel followed by _mapper.dot a dot representation of the depen-
dence graph of the kernel’s circuit at the start of heuristic routing and mapping, in which the gates are ordered
along a timeline according to their cycle attribute.

With the dependence graph available to the mapper, its availability list is used just as in the scheduler:

• the list at each moment contains those gates that have not been mapped but can be mapped now

• the availability list forms a kind of cut of the dependence graph: all predecessors of the gates in the list and
recursively all their predecessors have been mapped, all other gates have not been mapped (the cut is really the
set of dependences between the set of mapped and the set of non-mapped gates)

• each moment a gate has been mapped, it is taken out of the availability list; those of its successor dependence
gates of which all predecessors have been mapped, become available for being mapped, i.e. are added to the
availability list

This dependence graph is used to look-ahead, to find which two-qubit to map next, to make a selection from all that
are available or take just the most critical one, to try multiple ones and evaluate each alternative to map it, comparing

234 Chapter 1. How to read the documentation

OpenQL

those alternatives against one of the metrics (see later), and even go into recursion (see later as well), i.e. looking
farther ahead to see what the effects on subsequent two-qubit gates are when mapping the current one.

In this context the criticality of a gate is an important property of a gate: the criticality of a gate is the length of the
longest dependence path from the gate to the SINK gate and is computed in a single linear backward scan over the
dependence graph (Dijkstra’s algorithm).

Deciding for the next two-qubit gate to map, is done based on the following option:

• maplookahead: How does the mapper exploit the lookahead offered by the dependence graph constructed
from the input circuit?

– no: the mapper ignores the dependence graph and takes the gates to be mapped one by one from the input
circuit

– critical: gates that by definition do not need routing, are mapped first (and kind of flushed): these
include the classical gates, scheduling gates (such as wait), and the single qubit quantum gates; and of
the remaining (only two qubit) quantum gates the most critical gate is selected first to be routed and mapped
next; the rationale of taking the most critical gate is that after that one the most cycles are expected until
the end of the circuit, and so a wrong routing decision of a critical gate is likely to have most effect on the
mapped circuit’s latency; so criticality has higher priority to select the one to be mapped next, than NN
(see noroutingfirst for the opposite approach)

– noroutingfirst (default, best): gates that by definition do not need routing, are mapped first (and
kind of flushed): these include the classical gates, scheduling gates (such as wait), and the single qubit
quantum gates; in this, this noroutingfirst option has the same effect as critical; but those two
qubit quantum gates of which the operands are neighbors in the current mapping are selected to be mapped
first, not needing routing, also when these are not critical; and when none such are left, only then take the
most critical one; so NN has higher priority to select the one to be mapped next, than criticality

– all (promising in combination with recursion): as with noroutingfirst but don’t select the most
critical one, select them all; so at each moment gates that do not need routing, are mapped first (and kind
of flushed); these thus include the NN two-qubit gates; this mapping and flushing stops when only non-NN
two-qubit gates remain; instead of selecting one of these to be routed/mapped next, all of these are selected,
the decision is postponed; i.e. for all remaining (two qubit non-NN) gates generate alternatives and find
the best from these according to the chosen metric (see the mapper option below); and then select that
best one to route/map next

Generating Routing Alternatives

Having selected one (or more) two-qubit gates to map next, for each two-qubit gate the routing alternatives are ex-
plored. Subsequently, those alternatives will be compared using the selected metric and the best one selected; see
further below.

But first the routing alternatives have to be generated. When the mapped operands of a two-qubit gate are not NN,
they must be made NN by swapping/moving one or both over nearest-neighbor connections in the target platform’s
grid topology towards each other. Only then the two-qubit gate can be executed; the mapper will insert those swaps
and moves before the two-qubit gate in the circuit.

There are usually many routes between the qubits. The current implementation only selects the ones with the shortest
distance, and these can still be many. In a perfectly rectangular grid, the number of routes is similar to a Fibonaci
number depending on the distance decomposed in the x and y directions, and is maximal when the distances in the x
and y directions are equal. All shortest paths between two qubits in such a grid stay within a rectangle in the grid with
the mapped qubit operands at opposite sides of the diagonal.

A shortest distance leads to a minimal number of swaps and moves. For each route between qubits at a distance d,
there are furthermore d possible places in the route where to do the two-qubit gate; the other d-1 places in the route
will be a swap or a move.

1.28. Compiler Passes 235

OpenQL

The implementation supports an arbitrarily formed connection graph, so not only a rectangular grid. All that matter are
the distances between the qubits. Those have been computed using Floyd-Warshall from the qubit neighbor relations
during initialization of the mapper. The shortests paths are generated in a brute-force way by only navigating to
those neighbor qubits that will not make the total end-to-end distance longer. Unlike other implementations that only
minimize the number of swaps and for which the routing details are irrelevant, this implementation explicitly generates
all alternative paths to allow the more complicated metrics that are supported, to be computed.

The generation of those alternatives is controlled by the following option:

• mappathselect: When generating alternatives of shortest paths between two real qubits:

– all (default, best): select all possible alternatives: those following all possible shortest paths and in each
path each possible placement of the two-qubit gate

– borders: only select those alternatives that correspond to following the borders of the rectangle spanning
between the two extreme real qubits; so on top of the at most two paths along the borders, there still are all
alternatives of the possible placements of the two-qubit gate along each path

It is thus not supported to turn off to generate alternatives for the possible placements of the two-qubit gate along each
path.

The alternatives are ordered; this is relevant for the maptiebreak option below. The alternatives are ordered:

• first by the two-qubit gate for which they are an alternative; the most critical two-qubit gate is first; remember
that there can be more than one two-qubit gate when all was selected for the maplookahead option.

• then by the followed path; each path is represented by a sequence of transitions from the mapped first operand
qubit to the mapped second operand qubit. The paths are ordered such that of any set of paths with a common
prefix these are ordered by a clock-wise order of the successor qubits as seen from the last qubit of the common
prefix.

• and then by the placement of the two-qubit gate; the placements are ordered from start to end of the path.

So, the first alternative will be the one that clock-wise follows the border and has the two-qubit gate placed directly at
the qubit that is the mapped first operand of the gate; the last alternative will be the one that anti-clock-wise follows
the border and has the two-qubit gate placed directly at the qubit that is the mapped last operand of the gate.

Comparing Alternatives, Which Metric To Use

With all alternatives available, it is time to compare them using the defined metric. The metric to use is defined by the
strategy option, called for historic reasons mapper. What needs to be done when multiple alternatives compare
equal, is specified later.

• mapper: The basic mapper strategy (metric of mapper result optimization) that is employed:

– no (default for back-ward compatibility): no mapping is done. The output circuit is identical to the input
circuit.

– base: map the circuit: use as metric just the length of the paths between the mapped operands of each
two-qubit gate, and minimize this length for each two-qubit gate that is mapped; with only alternatives for
one two-qubit gate, all alternatives have the same shortest path, so all alternatives qualify equally; with
alternatives for multiple two-qubit gates, those two-qubit gates are preferred that lead to the least swaps
and moves.

– minextend (best): map the circuit: use as metric the extension of the circuit by each of the shortest paths
between the mapped operands of each two-qubit gate, and minimize this circuit extension by evaluating
all alternatives; the computation of the extension relies on scheduling-in the required swaps and moves in
the circuit and just subtracting the depths before and after doing that; the various options controlling this
scheduling-in, will be specified later below.

236 Chapter 1. How to read the documentation

OpenQL

– minextendrc: map the circuit: as in minextend, but taking resource constraints into account when
scheduling-in the swaps and moves.

Look-Back, Maximize Instruction-Level Parallelism By Scheduling

To know the circuit’s latency extension of an alternative, the mapped gates are represented as a scheduled circuit, i.e.
with gates with a defined cycle attribute, and the gates ordered in the circuit with non-decreasing cycle value. In
case the mapper option has the minextendrc value, also the state of all resources is maintained. When a swap or
move gate is added, it is ASAP scheduled (optionally taking the resource constraints into account) into the circuit and
the corresponding cycle value is assigned to the cycle attribute of the added gate. Note that when swap or move is
defined by a composite gate, the decomposed sequence is scheduled-in instead.

The objective of this is to maximize the parallel execution of gates and especially of swaps and moves. Indeed, the
smaller the latency extension of a circuit, the more parallelism was created, i.e. the more the ILP was enlarged. When
swaps and moves are not inserted as primitive gates but the equivalent decomposed sequences are inserted, ILP will
be improved even more.

This scheduling-in is done separately for each alternative: for each alternative, the swaps or moves are added and the
end-result evaluated.

This scheduling-in is controlled by the following options:

• mapusemoves: Use move instead of swap where possible. In the current implementation, a move is imple-
mented as a sequence of two cnots while a swap is implemented as a sequence of three cnots.

– no: don’t

– yes (default, best): do, when swapping with an ancillary qubit which is known to be in the zero state (|0>
for moves with 2 cnots); when not in the initial state, insert a move_init sequence (when defined in
the configuration file, the defined sequence, otherwise a prepz followed by a hadamard) when it doesn’t
additionally extend the circuit; when a move_init sequence would extend the circuit, don’t insert the
move

– 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20: yes, and insert a move_init sequence to get the ancillary qubit in the initial state, if needed; but
only when the number of cycles of circuit extension that this move_init causes, is less-equal than 0, 1,
... 20 cycles.

Please note that the mapassumezeroinitstate option defines whether the implementation of the
mapper can assume that each qubit starts off in the initial state; this increases the likelihood that moves are
inserted, and makes all these considerations of only inserting a move when a move_init can bring the
ancillary qubit in the initial state somehow without additional circuit extension, of no use.

• mapprepinitsstate: Does a prepz initialize the state, i.e. leave the state of a qubit in the |0> state?
When so, this can be reflected in the rs map.

– no (default, playing safe): no, it doesn’t; a prepz during mapping will, as any other quantum gate, set
the state of the operand qubits to rs_hasstate in the rs map

– yes (best): a prepz during mapping will set the state of the operand qubits to rs_wasinited; any
other gate will set the state of the operand qubits to rs_hasstate

• mapselectswaps: When scheduling-in swaps and moves at the end for the best alternative found, this
option selects that potentially not all required swaps and moves are inserted. When not all are inserted but
only one, the distance of the mapped operand qubits of the two-qubit gate for which the best alternative was
generated, will be one less, and after insertion heuristic routing and mapping starts over generating alternatives
for the new situation.

1.28. Compiler Passes 237

OpenQL

Please note that during evaluation of the alternatives, all swaps and moves are inserted. So the alternatives are
compared with all swaps and moves inserted but only during the final real insertion after having selected the
best alternative, just one is inserted.

– all (best, default): insert all swaps and moves as usual

– one: insert only one swap or move; take the one swapping/moving the mapped first operand qubit

– earliest: insert only one swap or move; take the one that can be scheduled earliest from the one swap-
ping/moving the mapped first operand qubit and the one swapping/moving the mapped second operand
qubit

• mapreverseswap: Since swap is symmetrical in effect (the states of the qubits are exchanged) but not in
implementation (the gates on the second operand start one cycle earlier and end one cycle later), interchanging
the operands may cause a swap to be scheduled at different cycles. Reverse operand real qubits of swap when
beneficial:

– no: don’t

– yes (best, default): when scheduling a swap, exploiting the knowledge that the execution of a swap for
one of the qubits starts one cycle later, a reversal of the real qubit operands might allow scheduling it one
cycle earlier

Looking Farther Ahead, Recurse To Find Best Alternative

Looking farther ahead beyond the mapping of the current two-qubit gate, the router recurses considering the effects of
its mapping on subsequent two-qubit gates.

After having evaluated the metric for each alternative, multiple alternatives may remain, all with the best value. For
the minextend and minextendrc strategies, there are options to select from these by looking ahead farther, i.e.
beyond the metric evaluation of this alternative for mapping one two-qubit gate. This recursion assumes that the current
alternative is selected, its swaps and moves are added to the circuit the v2r map is updated, and the availability set
is updated. And then in this new situation the implementation recurses by selecting one or more two-qubit gates to
map next, generating alternatives, evaluating these alternatives against the metric, and deciding which alternatives are
the best. This recursion can go deeper and deeper until a particular depth has been reached. Then of the resulting
tree of alternatives, for all the leaves representing the deepest alternatives, the metric is computed from the root to the
leaf and compared to each other. In this way suboptimalities of individual choices can be balanced to a more optimal
combination. From these leaves, the best is taken; when multiple alternatives compare equally well from root to leaf,
the maptiebreak option decides which one to take, as usual; see below there.

The following options control this recursion:

• mapselectmaxlevel: Looking farther ahead beyond the mapping of the current two-qubit gate, the router
recurses considering the effects of its mapping on subsequent two-qubit gates. The level specifies the recursion
depth: how many two-qubits in a row are considered beyond the current one. This generates a tree of alternatives.

– 0 (default, back-ward compatible): no recursion is done

– 1, 2, 3, 4, 5, 6, 7, 8, 9, 10: the indicated number of recursions is done; initial experi-
ments show that a value of 3 produces reasonable results, and that recursion depth of 5 and higher are
infeasible because of resource demand explosion

– inf: there is no limit to the number of recursions; this makes the resource demand of heuristic routing
and mapping explode

• mapselectmaxwidth: Not all alternatives are equally promising, so only some best are selected to recurse
on. The width specifies the recursion width: for how many alternatives the recursion is actually done. The
specification of the width is done relative to the number of alternatives that came out as best at the current
recursion level.

238 Chapter 1. How to read the documentation

OpenQL

– min (default): only recurse on those alternatives that came out as best at this point

– minplusone: only recurse on those alternatives that came out as best at this point, plus one second-best

– minplushalfmin (best combination of optimality and resources: only recurse on those alternatives that
came out as best at this point, plus some number of second-bests: half the number more than the number
of best ones

– minplusmin: only recurse on those alternatives that came out as best at this point, plus some number of
second-bests: twice the number of best ones

– all: don’t put a limit on the recursion width

• maprecNN2q: In maplookahead with value all, as with noroutingfirst, two-qubit gates which are
already NN, are immediately mapped, kind of flushing them. However, in recursion this creates an imbalance:
at each level optionally several more than just one two-qubit gate are mapped and this makes the results of the
alternatives largely incomparable. Comparision would be easier to understand when at each level only one two-
qubit gate would be mapped. This option specifies independently of the maplookahead option that is chosen
and that is applied before going into recursion, whether in the recursion this immediate mapping/flushing of NN
two-qubit gates is done.

– no (default, best): no, NN two-qubit gates are not immediately mapped and flushed until only non-NN
two-qubit gates remain; at each recursion level exactly one two-qubit gate is mapped

– yes: yes, NN two-qubit gates are immediately mapped and flushed until only non-NN two-qubit gates
remain; this makes recursion more greedy but makes interpreting the evaluations of the alternatives harder

Deciding For The Best, Committing To The Best

With or without recursion, for the base strategy as well as for the minextend and minextendrc strategies, when
at the end multiple alternatives still compare equally well, a decision has to be taken which two-qubit gate to route and
map. This selection is made based on the value of the following option:

• maptiebreak: When multiple alternatives remain for a particular strategy with the same best evaluation
value, decide how to select the best single one:

– first: select the first of the set

– last: select the last of the set

– random (default, best, non-deterministic): select in a random way from the set; when testing and compar-
ing mapping strategies, this option introduces non-determinism and non-reproducibility, which precludes
reasoning about the strategies unless many samples are taken and statistically analyzed

– critical (deterministic, second best): select the first of the alternatives generated for the most critical
two-qubit gate (when there were more)

Having selected a single best alternative, the decision has been made to route and map its corresponding two-qubit gate.
This means, scheduling in the result circuit the swaps and moves that route the mapped operand qubits, updating the
v2r and rs maps on the fly; see mapping_look_back for the details of this scheduling. And then map the two-qubit
gate; see mapping_input_and_output_intermediate_representation for what mapping involves.

After this, in the dependence graph a next gate is looked for to map next and heuristic routing and mapping starts over
again.

1.28. Compiler Passes 239

OpenQL

Configuration file definitions for mapper control

The configuration file contains the following sections that are recognized by the mapper:

• hardware_settings the number of real qubits in the platform, and the cycle time in nanoseconds to convert
instruction duration into cycles used by the various scheduling actions are taken from here

• instructions the mapper assumes that the OpenQL circuit was read in and that gates were created accord-
ing to the specifications of these in the configuration file: the name of each encountered gate is looked up in
this section and, if not found, in the gate_decomposition section; if found, that gate (or those gates)
are created; the duration field specifies the duration of each gate in nanoseconds; the type and various
cc_light fields of each instruction are used as parameters to select applicable resource constraints in
the resource-constrained scheduler

• gate_decomposition when creating a gate matching an entry in this section, the set of gates specified
by the decomposition description of the entry is created instead; the mapper exploits the decomposition
support that the configuration file offers by this section in the following way:

– reading the circuit When a gate specified as a composite gate is created in an OpenQL program,
its decomposition is created instead. So a cnot in the OpenQL program that is specified in the
gate_decomposition section as e.g. two hadamards with a cz in the middle, is input by the
mapper as this latter sequence.

– swap support A swap is a composite gate, usually consisting of 3 cnots; those cnots usually are
decomposed to a sequence of primitive gates itself. The mapper supports generating swap as a prim-
itive; or generating its shallow decomposition (e.g. to cnots); or generating its full decomposition
(e.g. to the primitive gate set). The former leads to a more readable intermediate qasm file; the latter
to more precise evaluation of the mapper selection criteria. Relying on the configuration file, when
generating a swap, the mapper first attempts to create a gate with the name swap_real, and when
that fails, create a gate with the name swap. The same machinery is used to create a move.

– making gates real Each gate input to the mapper is a virtual gate, defined to operate on virtual qubits.
After mapping, the output gates are real gates, operating on real qubits. Making gates real is the
translation from the former to the latter. This is usually done by replacing the virtual qubits by their
corresponding real qubits. But support is provided to also replace the gate itself: when a gate is made
real, the mapper first tries to create a gate with the same name but with _real appended to its name
(and using the mapped, real qubits); if that fails, it keeps the original gate and uses that (with the
mapped, real qubits) in the result circuit.

– ancilliary initialization For a move to be done instead of a swap, the target qubit must be in a par-
ticular state. For CC-Light this is the |+> state. To support other target platforms, the move_init
gate is defined to prepare a qubit in that state for the particular target platform. It decomposes to a
prepz followed by a Hadamard for CC-Light.

– making all gates primitive After mapping, the output gates will still have to undergo a final schedule
with resource constraints before code can be generated for them. Best results are obtained when then
all gates are primitive. The mapper supports a decomposition step to make that possible and this is
typically used to decompose leftover swaps and moves to primitives: when a gate is made primitive,
the mapper first tries to create a gate with the same name but with _prim appended to its name; if
that fails, it keeps the original gate and uses that in the result circuit that is input to the scheduler.

• topology A qubit grid’s topology is defined by the neighbor relation among its qubits. Each qubit has an
id (its index, used as a gate operand and in the resources descriptions) in the range of 0 to the number of
qubits in the platform minus 1. Qubits are connected by directed pairs, called edges. Each edge has an id (its
index, also used in the resources descriptions) in some contiguous range starting from 0, a source qubit and a
destination qubit. Two grid forms are supported: the xy form and the irregular form. In grids of the xy
form, there must be two additional attributes: x_size and y_size, and the qubits have in addition an X and
a Y coordinate: these coordinates in the X (Y) direction are in the range of 0 to x_size-1 (y_size-1).

240 Chapter 1. How to read the documentation

OpenQL

• resources See the scheduler’s documentation.

1.28. Compiler Passes 241

OpenQL

242 Chapter 1. How to read the documentation

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

243

OpenQL

244 Chapter 2. Indices and tables

PYTHON MODULE INDEX

o
openql, 43

245

OpenQL

246 Python Module Index

INDEX

Symbols
__init__() (openql.CReg method), 35, 61
__init__() (openql.Compiler method), 36, 63
__init__() (openql.Kernel method), 26, 53
__init__() (openql.Operation method), 35, 62
__init__() (openql.Pass method), 40, 66
__init__() (openql.Platform method), 19, 46
__init__() (openql.Program method), 22, 49
__init__() (openql.Unitary method), 36, 62
__init__() (openql.cQasmReader method), 43, 69

A
add_do_while() (openql.Program method), 23, 50
add_for() (openql.Program method), 23, 50
add_if() (openql.Program method), 22, 49
add_if_else() (openql.Program method), 23, 50
add_kernel() (openql.Program method), 22, 49
add_program() (openql.Program method), 22, 49
append_pass() (openql.Compiler method), 37, 64

B
barrier() (openql.Kernel method), 34, 61
breg_count() (openql.Kernel property), 26, 53
breg_count() (openql.Program property), 22, 49

C
classical() (openql.Kernel method), 29, 56
clear_passes() (openql.Compiler method), 39, 66
clifford() (openql.Kernel method), 33, 59
cnot() (openql.Kernel method), 32, 59
compile() (openql.Compiler method), 40, 66
compile() (openql.Program method), 25, 51
Compiler (class in openql), 36, 62
condgate() (openql.Kernel method), 28, 55
config_file() (openql.Platform property), 19, 46
conjugate() (openql.Kernel method), 34, 61
controlled() (openql.Kernel method), 34, 61
cphase() (openql.Kernel method), 32, 59
cQasmReader (class in openql), 41, 67
CReg (class in openql), 35, 61
creg_count() (openql.Kernel property), 26, 52
creg_count() (openql.Program property), 22, 49

cz() (openql.Kernel method), 32, 59

D
decompose() (openql.Unitary method), 36, 62
display() (openql.Kernel method), 34, 61
does_pass_exist() (openql.Compiler method), 39,

65
dump_architectures() (in module openql), 44
dump_compiler_docs() (in module openql), 45
dump_custom_instructions() (openql.Kernel

method), 26, 53
dump_info() (openql.Platform method), 20, 47
dump_options() (in module openql), 44
dump_options() (openql.Pass method), 41, 67
dump_pass_documentation() (openql.Pass

method), 40, 67
dump_pass_types() (openql.Compiler method), 37,

63
dump_passes() (in module openql), 44
dump_platform_docs() (in module openql), 45
dump_resources() (in module openql), 45
dump_strategy() (openql.Compiler method), 37, 63

E
ensure_initialized() (in module openql), 43

F
file2circuit() (openql.cQasmReader method), 43,

69
from_json() (openql.Platform static method), 21, 48
from_json_string() (openql.Platform static

method), 20, 46

G
gate() (openql.Kernel method), 27, 54
gate_clear_condition() (openql.Kernel

method), 27, 54
gate_preset_condition() (openql.Kernel

method), 26, 53
get_compiler() (openql.Platform method), 21, 48
get_compiler() (openql.Program method), 24, 51

247

OpenQL

get_custom_instructions() (openql.Kernel
method), 26, 53

get_info() (openql.Platform method), 20, 47
get_name() (openql.Pass method), 40, 66
get_num_passes() (openql.Compiler method), 39,

65
get_option() (in module openql), 44
get_option() (openql.Compiler method), 37, 64
get_option() (openql.Pass method), 41, 67
get_pass() (openql.Compiler method), 39, 65
get_passes() (openql.Compiler method), 39, 66
get_passes_by_type() (openql.Compiler

method), 39, 66
get_platform_json() (openql.Platform static

method), 21, 48
get_platform_json_string() (openql.Platform

static method), 20, 47
get_qubit_number() (openql.Platform method),

20, 47
get_sweep_points() (openql.Program method),

24, 51
get_type() (openql.Pass method), 40, 66
get_version() (in module openql), 43

H
hadamard() (openql.Kernel method), 29, 56
has_compiler() (openql.Platform method), 21, 47
has_compiler() (openql.Program method), 24, 51

I
identity() (openql.Kernel method), 29, 56
initialize() (in module openql), 43
insert_pass_after() (openql.Compiler method),

38, 64
insert_pass_before() (openql.Compiler

method), 38, 65
is_decompose_support_enabled()

(openql.Unitary static method), 36, 62

K
Kernel (class in openql), 25, 52

M
measure() (openql.Kernel method), 32, 58
module

openql, 19, 22, 25, 35, 36, 40, 41, 43
mrx90() (openql.Kernel method), 30, 57
mry90() (openql.Kernel method), 31, 57

N
name() (openql.Compiler property), 36, 63
name() (openql.Kernel property), 26, 52
name() (openql.Platform property), 19, 46

name() (openql.Program property), 22, 49
name() (openql.Unitary property), 36, 62

O
openql

module, 19, 22, 25, 35, 36, 40, 41, 43
Operation (class in openql), 35, 61

P
Pass (class in openql), 40, 66
Platform (class in openql), 19, 45
platform() (openql.cQasmReader property), 42, 69
platform() (openql.Kernel property), 26, 52
platform() (openql.Program property), 22, 49
prefix_pass() (openql.Compiler method), 38, 64
prepz() (openql.Kernel method), 32, 59
print_architectures() (in module openql), 44
print_compiler_docs() (in module openql), 45
print_custom_instructions() (openql.Kernel

method), 26, 53
print_info() (openql.Platform method), 20, 47
print_interaction_matrix() (openql.Program

method), 25, 52
print_options() (in module openql), 44
print_options() (openql.Pass method), 40, 67
print_pass_documentation() (openql.Pass

method), 40, 67
print_pass_types() (openql.Compiler method),

36, 63
print_passes() (in module openql), 44
print_platform_docs() (in module openql), 45
print_resources() (in module openql), 45
print_strategy() (openql.Compiler method), 37,

63
Program (class in openql), 22, 49
program() (openql.cQasmReader property), 43, 69

Q
qubit_count() (openql.Kernel property), 26, 52
qubit_count() (openql.Program property), 22, 49

R
remove_pass() (openql.Compiler method), 39, 66
rx() (openql.Kernel method), 31, 58
rx180() (openql.Kernel method), 31, 57
rx90() (openql.Kernel method), 30, 57
ry() (openql.Kernel method), 31, 58
ry180() (openql.Kernel method), 31, 58
ry90() (openql.Kernel method), 31, 57
rz() (openql.Kernel method), 31, 58

S
s() (openql.Kernel method), 29, 56

248 Index

OpenQL

sdag() (openql.Kernel method), 29, 56
set_compiler() (openql.Platform method), 21, 48
set_compiler() (openql.Program method), 24, 51
set_config_file() (openql.Program method), 24,

51
set_option() (in module openql), 43
set_option() (openql.Compiler method), 37, 63
set_option() (openql.Pass method), 41, 67
set_sweep_points() (openql.Program method),

24, 50
string2circuit() (openql.cQasmReader method),

43, 69

T
t() (openql.Kernel method), 30, 56
tdag() (openql.Kernel method), 30, 56
toffoli() (openql.Kernel method), 33, 59

U
Unitary (class in openql), 36, 62

W
wait() (openql.Kernel method), 34, 60
write_interaction_matrix() (openql.Program

method), 25, 52

X
x() (openql.Kernel method), 30, 57

Y
y() (openql.Kernel method), 30, 57

Z
z() (openql.Kernel method), 30, 57

Index 249

	How to read the documentation
	Concepts
	Installation
	Creating your first program
	Simulation using QX
	DQCsim Simulation
	Where to go from here
	Python API
	C++ API
	Configuration
	Supported architectures
	Supported global options
	Supported passes
	Supported resources
	Where to begin
	Build instructions
	Build automation
	Release procedure
	C++ coding conventions
	Doxygen documentation
	Changelog
	Contributors
	Program
	Kernel
	Quantum Gates
	Classical Instructions
	Platforms and architectures
	Compiler
	Compiler Passes

	Indices and tables
	Python Module Index
	Index

