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OpenQL

OpenQL is a framework for high-level quantum programming in C++/Python. The framework provides a compiler
for compiling and optimizing quantum code. The compiler produces quantum assembly and instruction-level code for
various target platforms. While the instruction-level code is platform-specific, the quantum assembly code (QASM) is
hardware-agnostic and can be simulated on one of the simulators.

Getting Started 1
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CHAPTER 1

Overview

OpenQL is a framework for high-level quantum programming in C++/Python. The framework provides a compiler for
compiling and optimizing quantum code.

1.1 This document

The first three chapters introduce OpenQL, help to install it, and show how to create a first OpenQL program. They
are here for people who want to get going with OpenQL as quickly as possible. For people just wanting an overview
of OpenQL, these, except for the installation chapter, are a must read.

Further chapters introduce to the basic concepts of OpenQL. They contain a lot of conceptual texts, and inevitable
for a good understanding of the system. What is a program, what is a kernel and to which extent are classical in-
structions supported? What kind of gates does OpenQL support, which are the internal and which are the external
representations? Omni-present in OpenQL is the platform, literally in the form of the platform configuration file that
parameterizes most passes on the supported platform. And finally the compiler passes, in a summary as well as in an
extensive description with functional description and sets of options listened too.

The document concludes with lists of APIs and indices.

1.2 OpenQL compiler structure

An OpenQL compiler reads a quantum program written in some external representation, performs several analysis and
transformation passes on it, and prints the result to an external representation again. Internally in the compiler the
passes operate on a common internal representation of the program, IR for short, which is equal to all passes.

Understanding this internal representation is key to understanding the operation of an OpenQL compiler. It is struc-
tured as an attributed tree of objects.

At the top one finds the (internal representation of the) program. Its main component is the vector of kernels. Each
ordinary kernel (object) contains a single circuit which basically is a vector of gates. Gates in OpenQL are the
constructs that refer to operations to be executed somehow on the computing platform. These can be quantum gates as
well as classical gates; the latter deal with classical arithmetic and measurement results. A circuit of a kernel is always
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executed from start to end. There are special kernels without a circuit that take care of control flow between kernels.
But for ordinary kernels after the last gate control is transferred to the next kernel.

All passes operate at the program level. Each performs its work on all kernels before it completes and another pass
can run. The order of the passes is predefined by OpenQL, but there are ways to enable/disable individual passes. The
effect of a pass is to update the internal representation. This can amount to computing attributes, replacing gates by
other ones, rearranging gates, and so on.

The objective of an OpenQL compiler is to produce an output external representation of the input program that satisfies
the needs of what comes next. What comes next is represented in OpenQL by the (target) platform. These platforms
can be software simulators or architectures targetting hardware quantum computers.

To the compiler this platform is described by a platform configuration file, a file in JSON format, which contains sev-
eral sections with descriptions of attributes of the platform. Examples of these are the number of qubits, the supported
set of primitive gates with their attributes, the connection graph between the qubits (also called the topology of the
grid), and the classical control constraints imposed by the control electronics of the hardware of the platform. It also
specifies for which hardware platform family it contains the configuration. These hardware platform families (called
architectures) are built-in into the OpenQL compiler, and the compiler, after having executed some platform inde-
pendent passes, will enter the architecture-specific part of the compiler where it executes several platform dependent
passes. When compiling for a hardware quantum computer target, the last ones of these will generate some form of
low-level assembly code corresponding to the particular instruction set of the platform.

4 Chapter 1. Overview



CHAPTER 2

Installation

OpenQL is supported on Linux, Windows and OSX. OpenQL can be installed on these platforms as a pre-built package
as well as can be compiled from sources.

• Pre-built package

– python package using pip

– conda package

• Compilation from sources

– Windows

– Linux

– OSx

2.1 Installing the pre-built package

Pre-built packages are available for OpenQL.

2.1.1 Pre-built Wheels

This is perhaps the easiest way to get OpenQL running on your machine.

Pre-built OpenQL wheels are available for 64-bit Windows, Linux and OSX. These wheels are available for Python
3.5, 3.6 and 3.7. OpenQL can be installed by the command:

pip install qutechopenql

Note: python refers to Python 3 and pip refers to Pip 3, corresponding to Python version 3.5, 3.6 or 3.7.

5
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2.1.2 Conda package

OpenQL can be installed as a conda package (currently on Linux and Windows only) by:

conda install -c qe-lab openql

Conda packages can also be built locally by using the recipe available in the conda-recipe directory, by running the
following command from the OpenQL directory:

conda build conda-recipe/.

The generated package can then be installed by:

conda install openql --use-local

2.2 Compilation from sources

Compiling OpenQL from sources involves:

• Setting-up required packages

• Obtaining OpenQL

2.2.1 Required Packages

The following packages are required to compile OpenQL from sources:

• g++ compiler with C++11 support (Linux)

• MSVC 2015 with update 3 or above (Windows)

• flex (> 2.6)

• bison (> 3.0)

• cmake (>= 3.0)

• swig (Linux: 3.0.12, Windows: 4.0.0)

• Python (3.5, 3.6, 3.7)

• [Optional] pytest used for running tests

• [Optional] Graphviz Dot utility to convert graphs from dot to pdf, png etc

• [Optional] XDot to visualize generated graphs in dot format

2.2.2 Notes for Windows Users

Dependencies can be installed with:

• win_flex_bison 2.5.20

• cmake 3.15.3

• swigwin 4.0.0

Make sure the above mentioned binaries are added to the system path.

6 Chapter 2. Installation
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• Use Power Shell for installation

• Set execution policy by:

Set-ExecutionPolicy -ExecutionPolicy RemoteSigned

• Install [PowerShell Community Extensions] (https://www.google.com “PowerShell Community Extensions”)

Install-Module -AllowClobber -Name Pscx -RequiredVersion 3.2.2

• MSVC 2015 should be added to the path by using the following command:

Invoke-BatchFile "C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\vcvarsall.bat
→˓" amd64

• but when you installed Microsoft Visual Studio Community Edition do:

Invoke-BatchFile "C:\Program Files (x86)\Microsoft Visual
→˓Studio\2019\Community\VC\Auxiliary\Build\vcvarsall.bat" amd64

• To make your life easier, you can add this command to the profile you are using for power shell, avoiding the
need to manually run this command every time you open a power shell. You can see the path of this profile by
echo $PROFILE. Create/Edit this file to add the above command.

• Python.exe, win_flex.exe, win_bison.exe and swig.exe should be in the path of power shell. To test if swig.exe
is the path, run:

Get-Command swig

• To show the currently defined environment variables do:

Gci env:

• Make sure the following variables are defined:

– PYTHON_INCLUDE (should point to the directory containing Python.h)

– PYTHON_LIB (should point to the python library pythonXX.lib, where XX is for the python version
number)

• To set an environment variable in an expression use this syntax:

$env:EnvVariableName = "new-value"

2.2.3 Obtaining OpenQL

OpenQL sources for each release can be downloaded from github releases as .zip or .tar.gz archive. OpenQL can also
be cloned by:

git clone https://github.com/QE-Lab/OpenQL.git

2.2.4 Compiling OpenQL as Python Package

Running the following command in the python (virtual) environment in Terminal/Power Shell should install the openql
package:

2.2. Compilation from sources 7

https://www.google.com
https://github.com/QE-Lab/OpenQL/releases


OpenQL

cd OpenQL
git submodule update --init --recursive
python setup.py install

Or in editable mode by the command:

pip install -e .[develop]

Running the tests

In order to pass all the python tests, the openql package should be installed in editable mode. Also, qisa-as and libqasm
should be installed first. Follow qisa-as and libqasm instructions to install python interfaces of these modules. Once
qisa-as and libqasm are installed, you can run all the tests by:

pytest -v

or

python -m pytest

2.2.5 Compiling C++ OpenQL tests and programs

Existing tests and programs can be compiled by the following instructions. You can use any existing example as a
starting point for your own programs, but refer to examples/cpp-standalone-example for the build system.

The tests are run with the tests directory as the working directory, so they can find their JSON files. The results end
up in tests/test_output.

Linux/OSX

Existing tests and examples can be compiled and run using the following commands:

mkdir cbuild
cd cbuild
cmake .. -DOPENQL_BUILD_TESTS=ON # configure the build
make # actually build OpenQL and the tests
make test # run the tests

Windows

Existing tests and examples can be compiled and run using the following commands:

mkdir cbuild
cd cbuild
cmake .. -DOPENQL_BUILD_TESTS=ON -DBUILD_SHARED_LIBS=OFF # configure the build
cmake --build . # actually build OpenQL and the tests
cmake --build . --target RUN_TESTS # run the tests

Note: -DBUILD_SHARED_LIBS=OFF is needed on Windows only because the executables can’t find the OpenQL
DLL in the build tree that MSVC generates, and static linking works around that. It works just fine when you manually
place the DLL in the same directory as the test executables though, so this is just a limitation of the current build system
for the tests.

8 Chapter 2. Installation
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CHAPTER 3

Creating your first Program

In the OpenQL framework, the quantum program (including kernels and gates) is created by API calls which are
contained in a C++ or Python program.

But before this is done, the platform object is created by an API call that takes the name of the platform configuration
file as one of its parameters. This platform configuration file is consulted by the APIs creating the program, kernels
and gates to generate the matching internal representation of each gate.

After creating the platform, the program and kernels are created. The program creation API takes the program name,
the platform object and the number of qubits that are used in the program as parameters. And similarly for each kernel.
After this, each kernel can be populated with gates. This is again done by API calls, one per gate.

After having added each kernel to the program, the program can be compiled. This leaves several output files in the
test_output directory. When compiling for CC-Light which is one of the hardware platforms of OpenQL, one will find
there a .qisa file which then can be executed on the platform. But one will also find there several .qasm files which can
be simulated by e.g. QX.

Let us start creating a program.

To begin working with OpenQL, you can start up python however you like. You can open a jupyter notebook (type
jupyter notebook in your terminal), open an interactive python notebook in your terminal (with ipython3),
or simply launch python in your terminal (by typing python3).

3.1 Hello World

In this section we will run ‘Hello World’ example of OpenQL. The first step is to import openql which can be done
by:

from openql import openql as ql

Next, create a platform by:

platform = ql.Platform("myPlatform", config_file_name)

9
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where, config_file_name is the name of the configuration file in JSON format which specifies the platform, e.g.
hardware_configuration_cc_light.json. For details, refer to Platform.

For this example we will be working on 3 qubits. So let us define a variable so that we can use it at multiple places in
our code.

nqubits = 3

Create a program

p = ql.Program("aProgram", platform, nqubits)

Create a kernel

k = ql.Kernel("aKernel", platform, nqubits)

Populate this kernel using default and custom gates

for i in range(nqubits):
k.gate('prepz', [i])

k.gate('x', [0])
k.gate('h', [1])
k.gate('cz', [2, 0])
k.gate('measure', [0])
k.gate('measure', [1])

Add the kernel to the program

p.add_kernel(k)

Compile the program

p.compile()

This will generate the output files in the test_output directory.

A good place to get started with with your own programs might be to copy examples/getting_started.py to some folder
of your choice and start modifying it. For further examples, have a look at the test programs inside the “tests” directory.

Todo: discuss the generated output files

3.2 Notebooks

Following Jupyter notebooks are available in the <OpenQL Root Dir>/examples/notebooks directory:

ccLightClassicalDemo.ipynb This notebook provides an introduction to compilation for ccLight with an emphasis
on:

• hybrid quantum/classical code generation

• control-flow in terms of:

– if, if-else

– for loop

10 Chapter 3. Creating your first Program
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– do-while loop

• getting measurement results

3.3 Examples

Following Jupyter notebooks are available in the <OpenQL Root Dir>/examples directory:

getting_started.py The Hello World example discussed in helloworld section.

rb_single.py Single qubit randomized benchmarking.

3.4 Tests

Various tests are also available in the <OpenQL Root Dir>/tests directory which can also be used as examples
testing various features of OpenQL.

3.3. Examples 11
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CHAPTER 4

Program

In the OpenQL programming model, one first creates the platform object and then with it the program object. After
that, one creates kernels with gates and adds these kernels to the program. Finally, one compiles the program and
executes it. At any time, options can be set and got.

We saw an example of this in Creating your first Program. Here it is again but then with everything glued together:

from openql import openql as ql

platform = ql.Platform("myPlatform", "hardware_configuration_cc_light.json")

nqubits = 3

p = ql.Program("aProgram", platform, nqubits)

k = ql.Kernel("aKernel", platform, nqubits)

for i in range(nqubits):
k.gate('prepz', [i])

k.gate('x', [0])
k.gate('h', [1])
k.gate('cz', [2, 0])
k.gate('measure', [0])
k.gate('measure', [1])

p.add_kernel(k)

p.compile()

Platform creation takes a name (to use in information messages) and the name of the platform configuration file. The
latter is used to initialize the platform attributes, e.g. to create custom gates.

A program is created by specifying a name, the platform, and the numbers of quantum and classical registers. The
name can be used as seed to create output file names and is used in information messages.

The main structural attribute of a program is its vector of kernels. This vector is in the simplest form initialized by

13
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adding kernels one by one to it. The order of execution is then the order of the kernels in the vector. But there are
also program APIs to create control flow between kernels such as if/then, if/then/else, do/while and for. These take
one or more kernels representing the then-part, the else-part, or the loop-body, and add special kernels around them to
represent the control flow. These latter APIs also take the particular branch condition or the number of iterations as
parameter. See Kernel for an overview of these APIs and see Classical gate attributes in the internal representation
for a definition of the control flow internal representation.

The gates of a kernel’s circuit are always executed sequentially. At the end of a circuit, control passes on to the next
kernel in the program’s vector of kernels.

After having completed adding kernels, the program has been completely specified. It is represented by a vector of
kernels, each with a circuit. And in this form, the program is compiled by invoking its p.compile() method.

In the p.compile() method, the platform independent compiler passes and then the platform dependent compiler
passes are called one by one in the order specified by the OpenQL compiler’s internals. After compilation, the p.
compile() method returns, with the internal representation still available. Compilation will have resulted in the
creation of several external representations, to be used by e.g. simulation, assembly/execution or human inspection.

[API TBD]

14 Chapter 4. Program
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Kernel

A kernel conventionally models a circuit with quantum gates ending in one or more measurements. In OpenQL, this
has been extended with:

• control flow that can jump at the end of a kernel to the start of another kernel; see this section

• classical gates mixed with quantum gates (including measurements) in a single circuit with the design objective
to support control flow changes; see Classical Instructions; measurements are just gates with classical results
and can be anywhere, bridging quantum code to classical code; a kernel doesn’t necessarily have to contain a
measurement

In OpenQL a kernel is an object; it has a name, a type, and a circuit as its main structural attributes. This circuit is
a vector of gates.

The type of a kernel with a non-empty circuit with gates is STATIC. During execution, all gates of such a circuit are
executed from the start to the end. After executing the last gate, control will be transferred to the next kernel in the
vector of kernels. This vector of kernels is an attribute of the governing program object.

You saw a first kernel which was a STATIC one being created in the example program in Program.

Kernels of other types are used to represent control flow. This is the topic of the remainder of this section. If you are
not interested in this now, you can read this later.

Let us first look at some example Python OpenQL code (adapted from tests/test_hybrid.py):

num_qubits = 5
num_cregs = 10

p = ql.Program('test_classical', platform, num_qubits, num_cregs)
kfirst = ql.Kernel('First', platform, num_qubits, num_cregs)

# create classical registers
rs1 = ql.CReg()
rs2 = ql.CReg()

# if (rs1 == rs2) then Thenpart else Elsepart endif
kfirst.classical(rs1, ql.Operation(...))

(continues on next page)
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(continued from previous page)

kfirst.classical(rs2, ql.Operation(...))
kthen = ql.Kernel('Thenpart', platform, num_qubits, num_cregs)
kthen.gate('x', [0])
kelse = ql.Kernel('Elsepart', platform, num_qubits, num_cregs)
kelse.gate('y', [0])
p.add_if_else(kthen, kelse, ql.Operation(rs1, '==', rs2))

# loop 10 times over Loopbody endloop;
kloopbody = ql.Kernel('Loopbody', platform, num_qubits, num_cregs)
kloopbody.gate('x', [0])
p.add_for(kloopbody, 10)
# Afterloop
kafterloop = ql.Kernel('Afterloop', platform, num_qubits, num_cregs)
kafterloop.gate('y', [0])
p.add_kernel(kafterloop)

# do Dowhileloopbody while (rs1 < rs2)
kdowhileloopbody = ql.Kernel('Dowhileloopbody', platform, num_qubits, num_cregs)
kdowhileloopbody.gate('x', [0])
kdowhileloopbody.classical(rs1, ql.Operation(...))
kdowhileloopbody.classical(rs2, ql.Operation(...))
p.add_do_while(kdowhileloopbody, ql.Operation(rs1, '<', rs2))
# Afterdowhile
kafterdowhile = ql.Kernel('Afterdowhile', platform, num_qubits, num_cregs)
kafterdowhile.gate('y', [0])
p.add_kernel(kafterdowhile)

p.compile()

These are three examples in one:

• the first creates an if-then-else construct under the condition that rs1 equals rs2

• the second creates a for loop with 10 iterations

• the third one creates a do-while construct executing the Dowhileloopbody as long as rs1 is less than rs2

We see that ordinary kernels are created and filled with a single gate; these are the STATIC kernels. These kernels
serve as the thenpart, elsepart, loopbody, etc. And then we see three examples of the creation of a control-flow
construct, with the ordinary kernels as parameters.

After this, we’ll have the following 15 kernels in the kernels vector of program test_classical (some are
named after their type, see below): First, IF_START, Thenpart, IF_END, ELSE_START, Elsepart,
ELSE_END, FOR_START, Loopbody, FOR_END, Afterloop, DO_WHILE_START, Dowhileloopbody,
DO_WHILE_END, Afterdowhile.

5.1 Control flow in the internal representation

The classical gates in Classical Instructions deal with classical computation. Control flow is represented in the internal
representation as kernels of a special type, with their special attributes.

The relevant kernel attributes are type, name, iterations, and br_condition. How these relate, is summa-
rized in the next table:
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type name cir-
cuit

br_condition itera-
tions

example OpenQL creating this
kernel

STATIC label gates p.add(ql.kernel(label, . . . ))
FOR_START body.name+’for_start’ loopcount p.add_for(body, loopcount)
FOR_END body.name+’for_end’
DO_WHILE_STARTbody.name+’do_while_start’ loopcond p.add_do_while(body, loopcond)
DO_WHILE_END body.name+’do_while’
IF_START then.name+’if’ thencond p.add_if(then, thencond)
IF_END then.name+’if_end’
ELSE_START else.name+’else’ p.add_if_else(then, else, then-

cond)ELSE_END else.name+’else_end’

The example OpenQL in the last column shows how a kernel of the type is created. The table also shows how the
parameters of the OpenQL call creating the kernel are used to initialize the kernel’s attributes.

Further information on these attributes:

• name is unique among the other names of kernels and is often used to construct a label before the first gate of
the circuit; for non-STATIC kernels it is generated in a systematic way from the name of the first kernel of the
body (or then or else part) and from the kernel type to make it easy to generate the conditional branches to the
respective label; the name column suggests a way but in practice this can more complicated in the presence of
nested constructs (then additional counts are needed) or in the presence of multiple kernels (a program object)
constituting the body (or then or else part)

• circuit (the real kernel attribute name is c but this is very non-descriptive) contains the gates and is empty
for non-STATIC kernels

• br_condition is an expression that is created by a call to an Operation() method (see Classical Instruc-
tions); it represents a condition so it must be of RELATIONAL type; this attribute stores the condition under
which the (first) body of the conditional construct is executed; the latter is the kernel referenced by then in
case of an if or an if-else; and it is the kernel representing the loop’s body in case of a do-while. body, then,
and else all stand for references to the other kernels in the respective constructs. Similarly, loopcond, and
thencond stand for the expressions representing the condition.

loopcount and iterations are of type size_t and so are non-negative and are assumed to have a value of at
least 1.

The semantics of a kernel with respect to control flow is described next, separately for each kernel type:

• type is STATIC: the kernel’s circuit is meant to be executed sequentially from start to end; after executing the
last gate, control is transferred to the next kernel in the vector of kernels

• type is FOR_START: the kernel sets up a loop with iterations specifying the iteration count, of which the
loop body starts with the next kernel, and of which the loop body ends with the first kernel with type FOR_END

• type is FOR_END: the kernel takes care of control transfer to the start of the loop by decrementing the iteration
counter and conditionally branching to the start of the loop body as long as the counter is not 0

• type is DO_WHILE_START: the kernel sets up a conditional loop of do-while type, of which the loop body
starts with the next kernel, and of which the loop body ends with a matching kernel with type DO_WHILE_END

• type is DO_WHILE_END: the kernel takes care of conditional control transfer to the start of the loop by
checking the specified branch condition br_condition and conditionally branching to the start of the loop
body as long as it evaluates to true

• type is IF_START: the kernel takes care of checking the specified branch condition br_condition and
conditionally branching to a matching kernel with type IF_END when it evaluates to false

• type is IF_END: the kernel signals a merge of control flow from an IF_START type kernel
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• type is ELSE_START: the kernel takes care of checking the specified branch condition br_condition and
conditionally branching to a matching kernel with type ELSE_END when it evaluates to true

• type is ELSE_END: the kernel signals a merge of control flow from an ELSE_START type kernel

The kernel’s name functions as a label to be used in control transfers.

Note There aren’t gates for control flow (control gates), only kernel attributes.

Note Control flow gates cannot be configured in the platform configuration file.

Note Control flow instructions/gates cannot be scheduled.

Note Code generation of control flow, i.e. the mapping from the internal representation to the target plat-
form’s instruction set and to QASM requires code inside the OpenQL compiler that is at a different
place than the mapping of gates in the internal representation to the target platform’s instruction set
or QASM; that there have to be these parallel pieces of code inside the OpenQL compiler compli-
cates the compiler unnecessarily.

Note Scheduling around control flow, i.e. defining durations, dependences, relation to resources, is ir-
regularly organized as well; a property of scheduling is that once scheduling of the main code has
been done, all later additional scheduling must not disturb the first schedule, and thus that usually to
accomplish this, more strict constraints are applied with less optimal code as result; and any attempt
is error-prone as well. It also means that the number of cycles to transfer control flow from one
kernel to the next kernel is not modeled and that loop scheduling and other forms of inter-kernel
scheduling are unnecessarily hard to support.

5.2 Control flow in the output external representation

As explained above in Kernel, the kernels in the kernels vector of a program by default execute in the order of
appearance in this vector, i.e. at the end of each kernel, control is transferred to the next kernel in the vector. This
holds for kernels of type STATIC, the type of kernels that store the gates.

When generating control flow, before the start and/or after the end of a kernel additional code is generated, depending
on the kernel’s type. The code before the start of a kernel is called prologue. The code of the kernel itself is called
body. The code after the end of a kernel is called epilogue.

In this, frequently a QASM conditional branch or the conditional branch with the condition inversed is generated.
The following table shows by example which conditional branch and inversed conditional branch is generated for a
particular br_condition, operands, and target label:

br_condition operands target label QASM cond. branch QASM inv. cond branch
“eq” rs1, rs2 label beq rs1, rs2, label bne rs1, rs2, label
“ne” bne rs1, rs2, label beq rs1, rs2, label
“lt” blt rs1, rs2, label bge rs1, rs2, label
“gt” bgt rs1, rs2, label ble rs1, rs2, label
“le” ble rs1, rs2, label bgt rs1, rs2, label
“ge” bge rs1, rs2, label blt rs1, rs2, label

The following is generated for a QASM prologue:

• the name of the kernel as label

• in case of IF_START: an inverse conditional branch for the given br_condition over the then part to the
corresponding IF_END kernel

• in case of ELSE_START: a conditional branch for the given br_condition over the else part to the corre-
sponding ELSE_END kernel
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• in case of FOR_START: the initialization using ldi``s of r29, r30 and r31 with
``iterations, 1 and 0, respectively, in which r30 is the increment, and r31 the loop counter

The following is generated for a QASM epilogue:

• the name of the kernel as label

• in case of DO_WHILE_END: a conditional branch for the given br_condition back over the body part to
the corresponding DO_WHILE_START kernel

• in case of FOR_END: an “add” to r31 of r30 (which increments the loop counter by 1), and a conditional branch
as long as r31 is less than r29, the number of iterations, to the loop body

5.3 API

In OpenQL this kernel object also supports adding gates to its circuit using the kernel API. To that end, a kernel object
has attributes such as qubit_count, and creg_count to check validity of the operands of the gates that are to
be created. And it needs to know the platform configuration file that is to be used to create custom gates; for this, the
API that creates a kernel object has the platform object as one of its parameters. Next to this, the kernel object has a
method to create each particular default gate.

[TBD]
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CHAPTER 6

Quantum Gates

Gates in OpenQL are the constructs that refer to operations to be executed somehow on the computing platform.

A gate refers to an operation and to zero or more operands.

Gates are organized in circuits as vectors of gates, i.e. linear sequences of gates. A circuit defines the operation of a
kernel. And a program consists of multiple kernels.

Gates can be subdivided in several kinds. This is useful in the description of the passes below.

First, gates can be subdivided according to where their execution has effect:

• quantum gates; these gates execute in the quantum computing hardware; these gates have at least one qubit as
(implicit or explicit) operand; these gates can have classical registers as operand as well and may rely on some
execution capability in classical hardware

• classical gates; these gates execute in classical hardware only; these don’t have any qubit as operand, only zero
or more classical registers

• directives; these gates execute neither in quantum nor in classical hardware; these look like gates but don’t
influence execution, e.g. the display gate

Quantum gates can also be subdivided seen from the state of a qubit:

• preparation gates; (usually one-qubit) gates taking qubits in an undefined state and bringing them in a particular
defined state

• rotation gates; gates that perform unitary rotations on the state of the operand qubits; examples are identity, x,
rx(pi), cnot, swap, and toffoli.

• measurement gates; gates that measure out the operand qubits, leaving them in a base state; the measurement
result can be left in a classical register

• scheduling gates; gates that only influence execution timing regarding the operand qubits; they provide a cycle
window for the qubit state to be operated upon before further use; examples are the wait and barrier gates

Quantum gates can further be subdivided from the number of operands they take; this becomes relevant when gates
are mapped on a quantum computing platform that only supports two-qubit rotation gates when the operand qubits are
physically adjacent, as is the case in CC-Light:
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• one-qubit gates; quantum gates operating on one qubit

• two-qubit gates; quantum gates operating on two qubits; e.g. two-qubit rotation gates are the main objective in
the current mapping pass since these gates require their qubit operands to be connected in CC-Light

• multi-qubit gates; quantum gates operating (implicitly or explicitly) on more than two qubits; e.g. multi-qubit
rotation gates must be decomposed to one-qubit and two-qubit gates because more-qubit primitive rotation gates
are not supported by CC-Light

Particular classes of quantum gates can be further recognized; these definitions are given mainly to refer to from other
chapters of this documentation, especially from the compiler passes chapter and the quantum gate chapter:

• primitive gates; quantum gates natively supported by instructions of the quantum computing platform

• pauli gates; the Identity, X, Y and Z rotation gates

• clifford gates; the one-qubit clifford gates form a group of 24 elements / equivalence classes each composed
from a sequence of one or more rotations by a multiple of 90 degrees in one dimension (X, Y or Z)

• default gates; quantum gates predefined by OpenQL

• custom gates; quantum gates defined by the platform configuration file

• composite gates; custom gates that are decomposed to their component gates when created

• specialized gates; custom gates with a definition in the configuration file that is specific for the particular qubit
operands that are specified in it; the semantic attributes of several specialized gates with the same quantum
operation but different qubit operands may differ (in-line with the purpose of a gate being specialized)

• parameterized gates; custom gates that are not specialized, i.e. with a definition that is not specific for particular
qubit operands; all gates created (usually for different qubits) from the same parameterized gate in the platform
configuration file have the same semantic attributes

6.1 Quantum gate attributes in the internal representation

Quantum gate attributes can be subdivided in the following kinds:

• structural attribute; these attributes define the gate, and are mandatory; key examples are operation name and
operands. These attributes are taken from the OpenQL program or the QASM external representation of a gate.
These never change after creation and usually are identical over multiple compilations.

• semantic attribute; these attributes define more of the semantics of the gate, usually for a specific purpose; their
value fully depends on and is derived from the gate’s structural attributes. In OpenQL they are defined in the
configuration file. Furthermore, these attributes usually don’t change during compilation, although that would
be possible when done in a consistent way over all gates. The latter is consistent with changing the configuration
file with respect to the values of the semantic attributes.

• result attribute; the value of these attributes is computed during compilation. Usually there is a choice from var-
ious strategies and platform parameters how to compute these and so result attributes are seen as an independent
kind of attributes. A key example is the cycle attribute as computed by the scheduler. At the start of compilation,
their value is undefined.

Below the OpenQL gate attributes are summarized in a table together with their key characteristics.
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Attribute kind example used by updated by C++ type
name structural “CZ q0,q1” all passes never string
operands [q0,q1] vector<size_t>
creg_operands [r23] vector<size_t>
angle numpy.pi double
type __t_gate__ gate_type_t
duration semantic 80 schedulers, etc. size_t
mat optimizer pass cmat_t
cycle result 4 code generation scheduler size_t

Custom gates have an additional set of attributes, primarily supporting the initialization of the gate attributes from
configuration file parameters.

Some further notes on the gate attributes:

• the name of a gate includes the string representations of its qubit operands in case of a specialized gate; so
in general, when given a name, one has to take care to isolate the operation from it; one may assume that the
operation is a single identifier optionally followed by white space and the operands

• gates are most directly distinguished by their name

Note Distinguishing gates internally in the compiler by their name is problematic; distinguishing by
their type (see the table below) would be better; the latter conveys the semantic definition and is
independent of the representation (e.g. mrx90, mx90, and Rmx90 all could be names of a -90
degrees X rotation); furthermore, a name is something of the external representation and is mapped
to the internal representation using the platform configuration file; however, the enumeration type of
type can never include all possible gates (e.g. those with arbitrary angles, any number of operands,
etc.) so the type inevitably can be imprecise; but it can be precise when the type refers to the
operation only, i.e. excluding the operands

• qubit and classical operands are represented by unsigned valued indices starting from 0 in their respective
register spaces

• angle is in radians; it specifies the value of the arbitrary angle of those operations that need one; it is initialized
only from an explicit specification as parameter value of the gate creation API; expressions initializing this
parameter are usually based on some definition of pi such as from numpy

• duration is in nanoseconds, just as the timing specifications in the platform configuration file; scheduling-
like passes divide it (rounding up) by the cycle_time to compute the number of cycles that an operation takes; it
is initialized implicitly when the gate is a default gate or a custom gate, or explicitly from a parameter value of
a gate creation API

• mat is of a two-dimensional complex double valued matrix type with dimensions equal to twice the number of
operands; it is only used by the optimizer pass; it is initialized implicitly when the gate is a default gate or a
custom gate

• cycle is in units of cycle_time as defined in the platform; the undefined value is
std::numeric_limits<int>::max() also known as INT_MAX. A gate’s cycle attribute gets de-
fined by applying a scheduler or a mapper pass, and remains defined until any pass is done that invalidates the
cycle attribute. As long as the gate’s cycle attribute is defined (and until it is invalidated), the gates must be
ordered in the circuit in non-decreasing cycle order. Also, there is then a derived internal circuit representation,
the bundled representation. See Circuits and bundles in the internal representation. The cycle attribute
invalidation generally is the result of adding a gate to a circuit, or any optimization or decomposition pass.

• type is an enumeration type; the following table enumerates the possible types and their characteristics:
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type operands example in QASM kind
__identity_gate__ 1 qubit i q[0] rotation
__hadamard_gate__ h q[0]
__pauli_x_gate__ x q[0]
__pauli_y_gate__ y q[0]
__pauli_z_gate__ z q[0]
__phase_gate__ s q[0]
__phasedag_gate__ sdag q[0]
__t_gate__ t q[0]
__tdag_gate__ tdag q[0]
__rx90_gate__ rx90 q[0]
__mrx90_gate__ xm90 q[0]
__rx180_gate__ x q[0]
__ry90_gate__ ry90 q[0]
__mry90_gate__ ym90 q[0]
__ry180_gate__ y q[0]
__rx_gate__ 1 qubit, 1 angle rx q[0],3.14
__ry_gate__ ry q[0],3.14
__rz_gate__ rz q[0],3.14
__cnot_gate__ 2 qubits cnot q[0],q[1]
__cphase_gate__ cz q[0],q[1]
__swap_gate__ swap q[0],q[1]
__toffoli_gate__ 3 qubits toffoli q[0],q[1],q[2]
__prepz_gate__ 1 qubit prepz q[0] preparation
__measure_gate__ measure q[0] measurement
__nop_gate__ none nop scheduling
__dummy_gate__ sink
__wait_gate__ 0 or more qubits, duration wait 1
__display__ 0 or more qubits display directive
__display_binary__ display_binary
__classical_gate__ 0 or more classical regs. add r[0],r[1] classical
__custom_gate__ defined by config file
__composite_gate__

The example column shows in the form of an example the QASM representation of the gate. For custom gates, the
QASM representation is the gate name followed by the representation of the operands, as with the default gates.

There is an API for each of the above gate types using default gates.

Some notes on the semantics of these gates:

• the wait gate waits for all its (qubit) operands to be ready; then it takes a duration of the given number of cycles
for each of its qubit operands to execute; in external representations it is usually possible to not specify operands,
it then applies to all qubits of the program; the barrier gate is sometimes found in external representations
but is identical to a wait with 0 duration on its operand qubits (or all when none were specified)

• the nop gate is identical to wait 1, i.e. a one cycle execution duration applied to all program qubits

• dummy gates are SOURCE and SINK; these gates don’t have an external representation; these are internal to
the scheduler

• custom and composite gates are fully specified in the configuration file; these shouldn’t have this type because
it doesn’t serve a purpose but have a type that reflects its semantics
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6.2 Circuits and bundles in the internal representation

A circuit of one kernel is represented by a vector of gates in the internal representation, and is a structural attribute of
the kernel object. The gates in this vector are assumed to be executed from the first to the last in the vector.

During a scheduling pass, the cycle attribute of each gate gets defined. See its definition in Quantum gate attributes
in the internal representation. The gates in the vector then are ordered in non-decreasing cycle order.

The schedulers also produce a bundled version of each circuit. That is done by the bundler function available
as ql::ir::bundler(circuit, cycle_time). It constructs and returns the bundled representation of the
given circuit. The cycle attribute of each gate of the circuit must be valid, and the gates in the circuit must have been
sorted by their cycle value.

In the internal bundles representation a circuit is represented by a list of bundles in which each bundle represents the
gates that are to be started in a particular cycle. A bundle can contain a mixture of quantum and classical gates. Each
bundle is structured as a list of sections and each section as a list of gates (actually gate pointers). The gates in each
section share the same operation but have different operands, obviously. The latter prepares for code generation for a
SIMD instruction set in which a single instruction with one operation can have multiple operands. Each bundle has
two additional attributes:

• start_cycle representing the cycle in which all gates of the bundle start

• duration_in_cycles representing the maximum duration in cycles of the gates in the bundle

This internal bundles representation is used during QISA generation instead of the original circuit.

6.3 Input external representation

OpenQL supports as input external representation currently only the OpenQL program, written in C++ and/or Python.
This is an API-level interface based on platform, program, kernel and gate objects and their methods. Calls to these
methods transfer the external representation into the internal representation (also called intermediate representation
or IR) as sketched above: a program (object) consisting of a vector of kernels, each containing a single circuit, each
circuit being a vector of gates.

Quantum gates are created using an API of the general form:

k.gate(name, qubit operand vector, classical operand vector, duration, angle)

in which particular operands can be empty or 0 depending on the particular kind of gate that is created. Gate creation
upon a call to this API goes through the following steps to create the internal representation:

1. the qubit and/or classical register operand indices are checked for validity, i.e. to be in the range of 0 to the
number specified in the program creation API minus 1

2. if the configuration file contains a definition for a specialized composite gate matching it, it is taken; the qubit
parameter substitution in the gates of the decomposition specification is done; each resulting gate must be avail-
able as (specialized or parameterized, and non-composite) custom gate, or as a default gate; the decomposition
is applied and all resulting gates are created and added to the circuit

3. otherwise, if a parameterized composite gate is available, take it; the parameter substitution in the gates of the
decomposition specification is done; each resulting gate must be available as (specialized or parameterized, and
non-composite) custom gate, or as a default gate; the decomposition is applied and all resulting gates are created
and added to the circuit

4. otherwise, if a specialized custom gate is available, create it with the attributes specified as parameter of the API
call above
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5. otherwise, if a parameterized custom gate is available, create it with the attributes specified as parameter of the
API call above

6. otherwise, if a default gate (predefined internally in OpenQL) is available, create it with the attributes specified
as parameter of the API call above

7. otherwise, it is an error

6.4 Output external representation

There are two closely related output external representations supported, both dialects of QASM 1.0:

• sequential QASM

• bundled QASM

In both representations, the QASM representation of a single gate is as defined in the example in QASM column in the
table above.

When the gate’s cycle attribute is still undefined, the sequential QASM representation is the only possible external
QASM representation. Gates are specified one by one, each on a separate line. A gate meant to execute after another
gate should appear on a later line than the latter gate, i.e. the gates are topologically sorted with respect to their
intended execution order. Kernels start with a label which names the kernel and serves as branch target in control
transfers.

Once the gate’s cycle attribute has been defined (and until it is invalidated), and in addition to the sequential QASM
representation above (that ignores the cycle attribute values), the bundled QASM representation can be generated that
instead reflects the cycle attribute values.

Each line in the bundled QASM representation represents the gates that start execution in one particular cycle in a
curly bracketed list with vertical bar separators. Each subsequent line represents a subsequent cycle. When there isn’t
a gate that starts execution in a particular cycle, a wait gate is specified instead with as integral argument the number
of cycles to wait. As with the sequential QASM representation, kernels start with a label which names the kernel and
serves as branch target in control transfers.
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Classical Instructions

OpenQL supports a mix of quantum and classical computing at the gate level. Please recall that classical gates are
gates that don’t have any qubit as operand, only zero or more classical registers and execute in classical hardware.

Let us first look at some example code (taken from tests/test_hybrid.py):

num_qubits = 5
num_cregs = 10

p = ql.Program('test_classical', platform, num_qubits, num_cregs)

k1 = ql.Kernel('aKernel1', platform, num_qubits, num_cregs)

# create classical registers
rd = ql.CReg()
rs1 = ql.CReg()
rs2 = ql.CReg()

# add/sub/and/or/xor
k1.classical(rd, ql.Operation(rs1, '+', rs2))

# not
k1.classical(rd, ql.Operation('~', rs2))

# comparison
k1.classical(rd, ql.Operation(rs1, '==', rs2))

# initialize (rd = 2)
k1.classical(rd, ql.Operation(2))

# assign (rd = rs1)
k1.classical(rd, ql.Operation(rs1))

# measure
k1.gate('measure', [0], rs1)

(continues on next page)
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(continued from previous page)

# add kernel
p.add_kernel(k1)
p.compile()

In this, we see a few new methods:

• ql.CReg(): Get a free classical register (creg) using the classical register constructor. The corresponding de-
structor would free it again.

• k.classical(creg, operation): Create a classical gate, assigning the value of the operation to the specified des-
tination classical register. The destination classical register and any classical registers that are operands to the
operation must have indices that are less than the number of classical registers specified with the creation of
kernel k. The gate is added to kernel k’s circuit.

• ql.Operation(value): Create an operation loading the immediate value value.

• ql.Operation(creg): Create an operation loading the value of classical register creg.

• ql.Operation(operator, creg): Create an operation applying the unary operator operator on the value of classical
register creg.

• ql.Operation(creg1, operator, creg2): Create an operation applying the binary operator operator on the values of
classical registers creg1 and creg2.

The operators in the calls above are a string with the name of one of the familiar C operators: the binary operators +,
-, &, |, ^, ==, !=, <, >, <=, and >=; or the unary ~.

Please note the creation of the quantum measurement gate that takes a classical register as operand to store the result.

7.1 Classical gate attributes in the internal representation

A classical gate has all general gate attributes, of which some are not used, and one additional one:

Attribute kind example used by updated by C++ type
name structural “add” all passes never

scheduler
string

creg_operands [r0,r1] vector<size_t>
int_operand 3 int
type __classical_gate__ gate_type_t
duration semantic 20 schedulers, etc. size_t
cycle result 4 code generation size_t
operands never
angle
mat

Some further notes on the gate attributes:

• name: The internal name. Happens to correspond to the gate name in the output QASM representation.

• creg_operands: Please note that for all gates the classical operands are in the creg_operands attribute, and
the quantum operands are in the operands attribute.

• int_operand: An immediate integer valued operand is kept here.

• type: Is always __classical_gate__. Classical gates are distinguished by their name.
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Note That classical gates are distinguished by their name and not by some type, is not as problematic as
for quantum gates. The names of classical gates are internal to OpenQL and have no relation to an
external representation.

• duration: Has a built-in value of 20.

Note That the value of duration is built-in, is strange. A first better value would be cycle_time.

• operands, angle, and mat are not used as attributes by classical gates.

The following classical gates are supported:

name operands operation
type

inv opera-
tion

OpenQL example

“add” 1 dest and 2 src reg indices ARITHMETIC k.classical(rd, Operation(rs1, ‘+’,
rs2))

“sub” k.classical(rd, Operation(rs1, ‘-’, rs2))
“eq” RELATIONAL “ne” k.classical(rd, Operation(rs1, ‘==’,

rs2))
“ne” “eq” k.classical(rd, Operation(rs1, ‘!=’,

rs2))
“lt” “ge” k.classical(rd, Operation(rs1, ‘<’,

rs2))
“gt” “le” k.classical(rd, Operation(rs1, ‘>’,

rs2))
“le” “gt” k.classical(rd, Operation(rs1, ‘<=’,

rs2))
“ge” “lt” k.classical(rd, Operation(rs1, ‘>=’,

rs2))
“and” BITWISE k.classical(rd, Operation(rs1, ‘&’,

rs2))
“or” k.classical(rd, Operation(rs1, ‘|’, rs2))
“xor” k.classical(rd, Operation(rs1, ‘^’,

rs2))
“not” 1 dest and 1 src reg index k.classical(rd, Operation(‘~’, rs))
“mov” ARITHMETIC k.classical(rd, Operation(rs))
“ldi” 1 dest reg index, 1

int_operand
k.classical(rd, Operation(3))

“nop” none undefined k.classical(‘nop’)

In the above:

Operation() creates an expression (binary, unary, register, or immediate); apart from in the OpenQL interface as
shown above, it is also used as expression in the internal representation of the br_condition attribute of a kernel

operation type indicates the type of operation which is mainly used for checking

inv operation represents the inverse of the operation; it is used in code generation of conditional branching; see
Kernel

7.2 Classical gates in circuits and bundles in the internal representa-
tion

In circuits and bundles, no difference is made between classical and quantum gates. Classical gates are scheduled
based on their operands and duration. The cycle attribute reflects the cycle in which the gate is executed, as usual.
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Scheduling of classical instructions is assigning cycle values to these so that the register dependences of these are
guaranteed to be met (ordinary scheduler); when resource constraints would be involved, those should be adhered to
as well (rcscheduler). The cycle_time would have to be the greatest common divider of the duration of all
gates, classical and quantum.

Classical instructions may depend on quantum gates when they retrieve the result of measurement. Quantum gates
may have a control dependence on classical code because of a conditional branch; with immediate feedback, in which
a single gate is performed conditionally on the value of a classical register, there also is a dependence of a quantum
gate on a classically computed value.

From these dependences, an exact cycle value of the start of execution of each gate can be computed, relative to the
start of execution of a kernel/circuit. Any constraints (maximum number of classical instructions to start in one cycle,
maximum number of quantum gates to start in one cycle, overlapping resource uses) have to encoded in resources
which are then adhered to by the rcscheduler.

7.3 Input external representation

OpenQL supports as input external representation currently only the OpenQL program, written in C++ and/or Python.
See Input external representation.

Classical gates are created using an API of the form as shown above in Classical Instructions. The table above shows
the correspondence between the input external and internal representation.

Note There is no role for the configuration file in creating classical gates. This is a lost opportunity
because it would have harmonized classical and quantum gates more. When defining QASM as
input external representation, this might be revised.

7.4 Output external representation

There are two closely related output external representations supported, both dialects of QASM 1.0; see Output ex-
ternal representation: sequential and bundled QASM. Again, these don’t make a difference between classical and
quantum gates.

The following table shows the QASM representation of a single classical gate:

name example operands QASM representation
“add” 0 as dest reg index, 1 and 2 as source reg indices add r0, r1, r2
“sub” sub r0, r1, r2
“and” and r0, r1, r2
“or” or r0, r1, r2
“xor” xor r0, r1, r2
“eq” eq r0, r1, r2
“ne” ne r0, r1, r2
“lt” lt r0, r1, r2
“gt” gt r0, r1, r2
“le” le r0, r1, r2
“ge” ge r0, r1, r2
“not” 0 as dest reg index, 1 as source reg index not r0, r1
“mov” mov r0, r1
“ldi” 0 as dest reg index, 3 as int_operand ldi r0, 3
“nop” none nop
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CHAPTER 8

Platform

OpenQL supports various target platforms. These platforms can be software simulators or architectures targetting
hardware quantum computers. The following platforms are supported by OpenQL:

• software simulator platforms

– QX Platform

– Quantumsim Platform

• hardware platforms

– CC-Light Platform

– Central Controller Platform Configuration

– CBox Platform

Note Quantumsim and QX are not really platforms. They are means to simulate a particular (hardware)
platform. Qasm files for use by QX and python scripts to interface to quantumsim are generated for
any hardware platform under the control of options. See the descriptions of the QX and Quantumsim
platforms referred to above.

Note We are planning to use DQCsim, a platform to connect to simulators. In that context, software
simulator platforms are connected to by DQCsim, and OpenQL just provides compilation support
to a particular hardware platform.

A platform can be created in OpenQL by using the Platform() API as shown below:

platform = ql.Platform('<platform_name>', <path_to_json_config_file>)

For example, a platform with the name CCL_platform and using hardware_config_cc_light.json as
platform configuration file can be created as:

platform = ql.Platform('CCL_platform', 'hardware_config_cc_light.json')
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8.1 Platform Configuration File

The platform configuration file describes the target platform in JSON format. The information in this file is used by all
platform independent compiler passes. The parameterization by this information makes these platform independent
compiler passes in source code independent of the platform but in effective function dependent on the platform.

A platform configuration file consists of several sections (in arbitrary order) which are described below. Most of these
are mandatory; the specification of the topology and the resources sections are optional.

For example (the ... contains the specification of the respective section):

1 {
2 "eqasm_compiler" : "cc_light_compiler",
3

4 "hardware_settings":
5 {
6 "qubit_number": 7,
7 "cycle_time" : 20,
8 ...
9 },

10

11 "topology":
12 {
13 ...
14 },
15

16 "resources":
17 {
18 ...
19 },
20

21 "instructions":
22 {
23 ...
24 },
25

26 "gate_decomposition":
27 {
28 ...
29 }
30 }

The platform comfiguration file for its structure is platform independent. It can be extended at will with more sections
and more attributes for platform dependent purposes.

The sections below describe sections and attributes that are used by platform independent compiler passes.

Please refer to the sections of the specific platforms for full examples and for the description of any additional at-
tributes.

8.1.1 Attribute eqasm_compiler

The eqasm_compiler attribute specifies the backend compiler to be used for this platform. After the passes of the
platform independent compiler have been called, the platform independent compiler switches out to the backend com-
piler to run the platform dependent passes. The specification of this attribute is mandatory. The eqasm_compiler
attribute can take the following values; these correspond to the platforms that are supported:

• none: no backend compiler is called
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• qx: no backend compiler is called; see above how to generate a qasm file for QX

• cc_light_compiler: backend compiler for CC_Light

• eqasm_backend_cc: backend compiler for CC

• qumis_compiler: backend compiler to CBOX

8.1.2 Section hardware_settings

The hardware_settings section specifies various parameters describing the platform. These include the
qubit_number'' and ``cycle_time which are generally used, and the buffer delays, only used by the rc-
scheduler, which are related to control electronics in the experiments (for hardware backends). The specification of
this section is mandatory.

For example:

1 "hardware_settings":
2 {
3 "qubit_number": 7,
4 "cycle_time" : 20,
5

6 "mw_mw_buffer": 0,
7 "mw_flux_buffer": 0,
8 "mw_readout_buffer": 0,
9 "flux_mw_buffer": 0,

10 "flux_flux_buffer": 0,
11 "flux_readout_buffer": 0,
12 "readout_mw_buffer": 0,
13 "readout_flux_buffer": 0,
14 "readout_readout_buffer": 0
15 }

In this:

• qubit_number indicates the number of (real) qubits available in the platform. Gates and instructions that
addresss qubits do this by providing a qubit index in the range of 0 to qubit_number-1. Using an index outside
this range will raise an error.

• cycle_time is the clock cycle time. As all other timing specifications in the configuration file it is specified
in nanoseconds. Only at multiples of this cycle time, instructions can start executing. The schedulers assign a
cycle value to each gate, which means that that gate can start executing a number of nanoseconds after program
execution start that equals that cycle value multiplied by the clock cycle_time value.

• The other entries of the hardware_settings section specify various buffer times to be inserted between
various operations due to control electronics setup. For example, mw_mw_buffer can be used to specify time
to be inserted between a microwave operation followed by another microwave operation. See Scheduling for
details.

8.1.3 Section topology

Specifies the qubit topology as the connection graph of the qubits of the platform. This is primarily used by the
mapping pass; this section is optional. It specifies the mapping of qubit indices to qubit positions in the platform, as
well as the mapping of connection indices to connections in the platform. A connection is a directed connection in
the platform between a pair of qubits that supports qubit interaction. It is directed to distinguish the control and target
qubits of two-qubit gates. In a platform topology’s connection graph, qubits are the nodes, and connection are the
edges.
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It looks like (the ... contains further specifications):

1 "topology" :
2 {
3 "x_size": 5,
4 "y_size": 3,
5 "qubits":
6 [
7 { "id": 0, "x": 1, "y": 2 },
8 ...
9 ],

10 "edges":
11 [
12 { "id": 0, "src": 2, "dst": 0 },
13 ...
14 ]
15 },

The topology section starts with the specification of the two dimensions of a rectangular qubit grid by specifying
x_size and y_size. The positions of the real qubits of the platform are defined relative to this (artificial) grid. The
coordinates in the X direction are 0 to x_size-1. In the Y direction they are 0 to y_size-1. Next, for each available qubit
in the platform, its position in the grid is specified: the id specifies the particular qubit’s index, and x and y specify
its position in the grid, as coordinates in the X and Y direction, respectively. Please note that not every position in the
x_size by y_size grid needs to correspond to a qubit.

Qubits are connected in directed pairs, called edges. Edge indices form a contigous range starting from 0. Each edge
in the topology is given an id which denotes its index, and a source (control) and destination (target) qubit index
by src and dst, respectively. This means that there can be edges between the same pair of qubits but in opposite
directions. The qubit indices specified here must correspond to available qubits in the platform.

For a full example of this section, please refer to CC-Light Platform.

8.1.4 Section resources

Specify the classical control constraints of the platform. This section is optional. These constraints are used by the
resource manager, that on its turn is used by the scheduling and mapping passes. These classical control constraints
are described as restrictions on concurrent access to resources of predefined resource types. Specification of these
resources affects scheduling and mapping of gates.

The resources section specifies zero or more resource types that are predefined by the mandatory platform de-
pendent resource manager. For CC-Light, these resource types are qubits, qwgs, meas_units, edges, and
detuned_qubits. The presence of one in the configuration file indicates that the resource-constrained scheduler
should take it into account when trying to schedule operations in parallel, i.e. with overlapping executions. Although
their names suggest otherwise, they are just vehicles to configure the scheduler and need not correspond to real re-
sources present in the hardware. This also implies that they can be easily reused for other platforms.

For a full example of this section, including an extensive description of the various resource types, please refer to
CC-Light Platform. For a description of their use by the scheduler, please refer to Scheduling.

8.1.5 Section instructions

Specifies the list of primitive gates supported by the platform. Creation of a primitive custom gate takes its parameters
from this specification to initialize the gate’s attributes.

Examples of a 1-qubit and a 2-qubit instruction are shown below:
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1 "instructions": {
2 "x q0": {
3 "duration": 40,
4 "latency": 0,
5 "qubits": ["q0"],
6 "matrix": [ [0.0,0.0], [1.0,0.0],
7 [1.0,0.0], [0.0,0.0]
8 ],
9 "disable_optimization": false,

10 "type": "mw"
11 },
12 "cnot q2,q0": {
13 "duration": 80,
14 "latency": 0,
15 "qubits": ["q2","q0"],
16 "matrix": [ [0.1,0.0], [0.0,0.0], [0.0,0.0], [0.0,0.0],
17 [0.0,0.0], [1.0,0.0], [0.0,0.0], [0.0,0.

→˓0],
18 [0.0,0.0], [0.0,0.0], [0.0,0.0], [1.0,0.

→˓0],
19 [0.0,0.0], [0.0,0.0], [1.0,0.0], [0.0,0.

→˓0],
20 ],
21 "disable_optimization": true,
22 "type": "flux"
23 },
24 ...
25 }

x q0 is the name of the instruction which will be used to refer to this instruction inside the OpenQL program. x
would also be allowed as name. The former defines a specialized gate, the latter defines a generalized
gate; please refer to Quantum Gates for the definitions of these terms and to Input external representation for the
use of these two forms of instruction definitions.

• duration specifies the time duration required to complete this instruction.

• latency; due to control electronics, it is sometimes required to add a positive or negative latency to an in-
struction. This can be specified by the latency field. This field is divided by cycle time and rounded up to
obtain an integer number of cycles. After scheduling is performed, an instruction is shifted back or forth in time
depending upon the calculated cycles corresponding to the latency field.

• qubits refer to the list of qubit operands.

Note This field has to match the operands in the name of the instruction, if specified there. This is
checked. Otherwise there is no use of this field. So there is redundancy here.

• matrix specifies the process matrix representing this instruction. If optimization is enabled, this matrix will
be used by the optimizer to fuse operations together, as discussed in Optimization. This can be left un-specified
if optimization is disabled.

• disable_optimization is used to enable/disable optimization of this instruction. Setting
disable_optimization to true will mean that this instruction cannot be compiled away during opti-
mization.

Note This is not implemented. Propose to do so. Then have to define what is exactly means: com-
piling away is interpreted as the gate with this flag true will never be deleted from a circuit
once created, nor that the circuit that contains it will be deleted.

• type indicates whether the instruction is a microwave (mw), flux (flux) or readout (readout). This is used
in CC-Light by the resource manager to select the resources of a gate for scheduling.
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8.1.6 Section gate_decomposition

Specifies a list of gates defined by decomposition into primitive gates.

Examples of two decompositions are shown below. %0 and %1 refer to the first argument and the second argument.
This means according to the decomposition on Line 2, rx180 %0 will allow us to decompose rx180 q0 to x q0.
Similarly, the decomposition on Line 3 will allow us to decompose cnot q2, q0 to three instructions, namely:
ry90 q0, cz q2, q0 and ry90 q0.

1 "gate_decomposition": {
2 "rx180 %0" : ["x %0"],
3 "cnot %0,%1" : ["ry90 %1","cz %0,%1","ry90 %1"]
4 }

These decompositions are simple macros (in-place substitutions) which allow programmer to manually specify a
decomposition. These take place at the time of creation of a gate in a kernel. This means the scheduler will schedule
decomposed instructions. OpenQL can also perform Control and Unitary decompositions which are discussed in
Decomposition.

8.2 QX Platform

Details of the configuration file for the QX simulator platform. [TBD]

The OpenQL compiler is able to generate a qasm file to interface to QX. This qasm file generation is controlled by
option write_qasm_files:

• yes: Qasm files are generated before and after most of the passes.

• no: No qasm files are generated.

The qasm files are generated in the default output directory. The qasm file to be used for QX is named by the program
name suffixed with .qasm.

Unlike in previous releases, quantumsim is not considered a platform. It is a means to simulate a particular (hardware)
platform without timing.

[TBD]

8.3 Quantumsim Platform

The OpenQL compiler is able to generate a python script to interface to quantumsim. This script generation is con-
trolled by option quantumsim:

• no: No script to interface to quantumsim is generated.

• yes: A python script is generated to interface with a standard version of quantumsim.

• qsoverlay: A python script is generated to interface with the qsoverlay module on top of quantumsim.

The scripts are generated in the default output directory.

Unlike in previous releases, quantumsim is not considered a platform. It is a means to simulate a particular (hardware)
platform.

The quantumsim option is checked in the CC-Light backend in two places:

• just when entering the backend after decomposition before scheduling

• just before generating QISA, i.e. after mapping, rcscheduling and decomposition after scheduling.
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[TBD]

8.4 CC-Light Platform

The file hardware_configuration_cc_light.json available inside the tests directory is an example configuration file
for the CC-Light platform with 7 qubits.

This file consists of several sections (in arbitrary order) which are described below.

eqasm_compiler specifies the backend compiler to be used for this CC-Light platform, which in this case has
the name cc_light_compiler. The backend compiler is called after the platform independent passes, and calls
several private passes by itself. This backend compiler and its passes are described in detail in Compiler Passes. One
of these is the code generation pass.

"eqasm_compiler" : "cc_light_compiler",

hardware_settings is used to configure various hardware settings of the platform as shown below. These settings
affect the scheduling of instructions. Please refer to Platform for a full description and an example.

topology specifies the mapping of qubit indices to qubit positions in the platform, as well as the mapping of
connection indices to connections in the platform. A connection is a directed connection in the platform between a
pair of qubits that supports qubit interaction. It is directed to distinguish the control and target qubits of two-qubit
gates. In a platform topology’s connection graph, qubits are the nodes, and connection are the edges.

Figure Fig. 8.1 shows these numberings in the 7 qubit CC-Light platform.

The topology section starts with the specification of the two dimensions of a rectangular qubit grid by specifying
x_size and y_size. The positions of the real qubits of the platform are defined relative to this (artificial) grid. The
coordinates in the X direction are 0 to x_size-1. In the Y direction they are 0 to y_size-1. Next, for each available qubit
in the platform, its position in the grid is specified: the id specifies the particular qubit’s index, and x and y specify
its position in the grid, as coordinates in the X and Y direction, respectively. Please note that not every position in the
x_size by y_size grid needs to correspond to a qubit.

Qubits are connected in directed pairs, called edges. Edge indices form a contigous range starting from 0. Each edge
in the topology is given an id which denotes its index, and a source (control) and destination (target) qubit index by
src and dst, respectively. This means that although Edge 0 and Edge 8 are between qubit 0 and qubit 2, they are
different as these edges are in opposite directions. The qubit indices specified here must correspond to available qubits
in the platform.

1 "topology" : {
2 "x_size": 5,
3 "y_size": 3,
4 "qubits":
5 [
6 { "id": 0, "x": 1, "y": 2 },
7 { "id": 1, "x": 3, "y": 2 },
8 { "id": 2, "x": 0, "y": 1 },
9 { "id": 3, "x": 2, "y": 1 },

10 { "id": 4, "x": 4, "y": 1 },
11 { "id": 5, "x": 1, "y": 0 },
12 { "id": 6, "x": 3, "y": 0 }
13 ],
14 "edges":
15 [
16 { "id": 0, "src": 2, "dst": 0 },
17 { "id": 1, "src": 0, "dst": 3 },

(continues on next page)
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Fig. 8.1: Connection graph with qubit and connection (edge) numbering in the 7 qubits CC-Light Platform
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18 { "id": 2, "src": 3, "dst": 1 },
19 { "id": 3, "src": 1, "dst": 4 },
20 { "id": 4, "src": 2, "dst": 5 },
21 { "id": 5, "src": 5, "dst": 3 },
22 { "id": 6, "src": 3, "dst": 6 },
23 { "id": 7, "src": 6, "dst": 4 },
24 { "id": 8, "src": 0, "dst": 2 },
25 { "id": 9, "src": 3, "dst": 0 },
26 { "id": 10, "src": 1, "dst": 3 },
27 { "id": 11, "src": 4, "dst": 1 },
28 { "id": 12, "src": 5, "dst": 2 },
29 { "id": 13, "src": 3, "dst": 5 },
30 { "id": 14, "src": 6, "dst": 3 },
31 { "id": 15, "src": 4, "dst": 6 }
32 ]
33 },

These mappings are used in:

• the QISA, the instruction set of the platform, notably in the instructions that set the masks stored in the mask
registers that are used in the instructions of two-qubit gates to address the operands.

• the mapper pass that maps virtual qubit indices to real qubit indices. It is described in detail in Mapping.

• the postdecomposition pass that maps two-qubit flux instructions to sets of one-qubit flux instructions.

resources is the section that is used to specify/configure various resource types available in the platform as dis-
cussed below. Specification of these resource types affects scheduling and mapping of gates. The configuration of
the various resource types in hardware_configuration_cc_light.json assumes that the CC-Light architecture has the
following relations between devices, connections, qubits and operations:

Device Name DIO connector Target qubits Operation Type
UHFQC-0 DIO1 0, 2, 3, 5, 6 measurement
UHFQC-1 DIO2 1, 4 measurement
AWG-8 0, channel 0~6 DIO3 0~6 flux
AWG-8 1, channel 0 DIO4 0,1 microwave
AWG-8 1, channel 1 DIO4 5,6 microwave
AWG-8 2, channel 0 DIO5 2,3,4 microwave
VSM – 0~6 microwave masking

The resources section specifies zero or more resource types. Each of these must be predefined by the plat-
form’s resource manager. For CC-Light, these resource types are qubits, qwgs, meas_units, edges and
detuned_qubits. The presence of one in the configuration file indicates that the resource-constrained scheduler
should take it into account when trying to schedule operations in parallel, i.e. with overlapping executions; absence of
one in the configuration file thus indicates that this resource is ignored by the scheduler. Although their names suggest
otherwise, they are just vehicles to configure the scheduler and need not correspond to real resources present in the
hardware.

qubits: That one qubit can only be involved in one operation at each particular cycle, is specified by the qubits
resource type, as shown below. count needs to be at least the number of available qubits.

1 "qubits":
2 {
3 "count": 7
4 },

8.4. CC-Light Platform 39

https://github.com/QE-Lab/OpenQL/blob/develop/tests/hardware_config_cc_light.json


OpenQL

So, when this resource type is included in the configuration in this way, it will guarantee that the resource-constrained
scheduler will never schedule two operations in parallel when these share a qubit index in the range of 0 to count-1 as
operand.

qwgs: This resource type specifies, when configured, several sets of qubit indices. For each set it specifies that when
one of the qubits in the set is in use in a particular cycle by an instruction of ‘mw’ type (single-qubit rotation gates
usually), that when one of the other qubits in the set is in use by an instruction of ‘mw’ type, that instruction must be
doing the same operation. In CC-light, this models QWG wave generators that only can generate one type of wave at
the same time, and in which each wave generator is connected through a switch to a subset of the qubits.

1 "qwgs" :
2 {
3 "count": 3,
4 "connection_map":
5 {
6 "0" : [0, 1],
7 "1" : [2, 3, 4],
8 "2" : [5, 6]
9 }

10 },

The number of sets (waveform generators) is specified by the count field. In the connection_map it is specified
which waveform generator is connected to which qubits. Each qubit that can be used by an instruction of ‘mw’ type,
should be specified at most once in the combination of sets of connected qubits. For instance, the line with "0"
specifies that qwg 0 is connected to qubits 0 and 1. This is based on the AWG-8 1, channel 0 entry in Table
Table 8.4. This information is utilized by the scheduler to perform resource-constraint aware scheduling of gates.

meas_units: This resource type is similar to qwgs; the difference is that it is not constraining on the operations
to be equal but on the start cycle of measurement to be equal. It specifies, when configured, several sets of qubit
indices. For each set it specifies that when one of the qubits in the set is in use in a particular cycle by an instruction
of ‘readout’ type (measurement gates usually) that when one of the other qubits in the set is in use by an instruction of
‘readout’ type the latter must also have started in that cycle. In CC-light, this models measurement units that each can
only measure multiple qubits at the same time when the measurements of those qubits start in the same cycle.

There are count number of sets (measurement units). For each measurement unit it is described which set of qubits
it controls. Each qubit that can be used by an instruction of ‘readout’ type, should be specified at most once in the
combination of sets of connected qubits.

1 "meas_units" :
2 {
3 "count": 2,
4 "connection_map":
5 {
6 "0" : [0, 2, 3, 5, 6],
7 "1" : [1, 4]
8 }
9 },

edges: This resource type specifies, when present, for each directed qubit pair corresponding to a directed connection
in the platform (edge), which set of other edges cannot execute a two-qubit gate in parallel.

Two-qubit flux gates (instructions of flux type) are controlled by qubit-selective frequency detuning. Frequency-
detuning may cause neighbor qubits (qubits connected by an edge) to inadvertently engage in a two-qubit flux gate
as well. This happens when two connected qubits are both executing a two-qubit flux gate. Therefore, for each edge
executing a two-qubit gate, certain other edges should not execute a two-qubit gate.

Edges and the constraints imposed by these edges are specified in the edges section. count specifies at least the
number of edges between qubits in the platform. connection_map specifies connections. For example, the entry
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with “0” specifies for Edge 0 a constraint on Edge 2 and Edge 10. This means, if Edge 0 is in use by a two-qubit flux
gate, a two-qubit flux gate on Edge 2 and Edge 10 will not be scheduled, until the one on Edge 0 completes.

When edges is present as a resource type, each edge of the platform must appear in the connection_map. Pro-
viding an empty list for an edge in the connection_map will result in not applying any edge constraint during
scheduling.

1 "edges":
2 {
3 "count": 16,
4 "connection_map":
5 {
6 "0": [2, 10],
7 "1": [3, 11],
8 "2": [0, 8],
9 "3": [1, 9],

10 "4": [6, 14],
11 "5": [7, 15],
12 "6": [4, 12],
13 "7": [5, 13],
14 "8": [2, 10],
15 "9": [3, 11],
16 "10": [0, 8],
17 "11": [1, 9],
18 "12": [6, 14],
19 "13": [7, 15],
20 "14": [4, 12],
21 "15": [5, 13]
22 }
23 },

detuned_qubits: Constraints on executing two-qubit gates in parallel to other gates, are specified in this
detuned_qubits section, when present. For each edge, the set of qubits is specified that cannot execute a gate
when on the particular edge a two-qubit gate is executed; at the same time, this resource type specifies implicitly for
each qubit when it would be executing a gate, on which edges a two-qubit gate cannot execute in parallel.

There are at least count number of qubits involved. When detuned_qubits is present as a resource type, each
edge of the platform must appear in the connection_map. Providing an empty set of qubits for an edge in the
connection_mapwill result in not applying the detuned_qubits constraint related to this edge during schedul-
ing. Not all qubits need to be involved in this type of constraint with some edge. In the example below, Qubit 0 and
Qubit 1 are examples of qubits executing a gate on which can be in parallel to executing a two-qubit gate on any pair
of qubits.

A two-qubit flux gate lowers the frequency of its source qubit to get near the frequency of its target qubit. Any two
qubits which have near frequencies execute a two-qubit flux gate. To prevent any neighbor qubit of the source qubit
that has the same frequency as the target qubit to interact as well, those neighbors must have their frequency detuned
(lowered out of the way). A detuned qubit cannot execute a single-qubit rotation (an instruction of ‘mw’ type).

1 "detuned_qubits":
2 {
3 "count": 7,
4 "connection_map":
5 {
6 "0": [3],
7 "1": [2],
8 "2": [4],
9 "3": [3],

10 "4": [],

(continues on next page)
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11 "5": [6],
12 "6": [5],
13 "7": [],
14 "8": [3],
15 "9": [2],
16 "10": [4],
17 "11": [3],
18 "12": [],
19 "13": [6],
20 "14": [5],
21 "15": []
22 }
23 }

instructions: Instructions can be specified/configured in the instructions section. Examples of a 1-qubit
and a 2-qubit instruction are shown below:

1 "instructions": {
2 "x q0": {
3 "duration": 40,
4 "latency": 0,
5 "qubits": ["q0"],
6 "matrix": [ [0.0,0.0], [1.0,0.0],
7 [1.0,0.0], [0.0,0.0]
8 ],
9 "disable_optimization": false,

10 "type": "mw",
11 "cc_light_instr_type": "single_qubit_gate",
12 "cc_light_instr": "x",
13 "cc_light_codeword": 60,
14 "cc_light_opcode": 6
15 },
16 "cnot q2,q0": {
17 "duration": 80,
18 "latency": 0,
19 "qubits": ["q2","q0"],
20 "matrix": [ [0.1,0.0], [0.0,0.0], [0.0,0.0], [0.0,0.0],
21 [0.0,0.0], [1.0,0.0], [0.0,0.0], [0.0,0.

→˓0],
22 [0.0,0.0], [0.0,0.0], [0.0,0.0], [1.0,0.

→˓0],
23 [0.0,0.0], [0.0,0.0], [1.0,0.0], [0.0,0.

→˓0],
24 ],
25 "disable_optimization": true,
26 "type": "flux",
27 "cc_light_instr_type": "two_qubit_gate",
28 "cc_light_instr": "cnot",
29 "cc_light_right_codeword": 127,
30 "cc_light_left_codeword": 135,
31 "cc_light_opcode": 128
32 },
33 ...
34 }

Please refer to Platform for a description of the CC-Light independent attributes. The CC-Light dependent attributes
are:
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cc_light_instr_type is used to specify the type of instruction based on the number of expected qubits. Please
refer to Scheduling for its use by the rcscheduler.

cc_light_instr specifies the name of this instruction used in CC-Light architecture. This name is used in the
generation of the output code and in the implementation of the checking of the qwg resource. Please refer to Scheduling
for its use by the rcscheduler.

cc_light_codeword, cc_light_right_codeword, cc_light_left_codeword and
cc_light_opcode are used in the generation of the control store file for CC-Light platform. For single
qubit instructions, cc_light_codeword refers to the codeword to be used for this instruction. Recall that the
quantum pipeline contains a VLIW front end with two VLIW lanes, each lane processing one quantum operation.
cc_light_right_codeword and cc_light_left_codeword are used to specify the codewords used
for the left and right operation in two-qubit instruction. cc_light_opcode specifies the opcode used for this
instruction.

Warning: At the moment, generation of the control-store file is disabled in the compiler as this was not being
used in experiments.

gate_decomposition Gate decompositions can also be specified in the configuration file in the
gate_decomposition section. Please refer to Platform for a description and full example of this section.

8.5 Central Controller Platform Configuration

8.5.1 CC configuration file

This section describes the JSON configuration file format for OpenQL in conjunction with the Central Controller (CC)
backend. Note that for the CC - contrary to the CC-light - the final hardware output is entirely determined by the
contents of the configuration file, there is no built-in knowledge of instrument connectivity or codeword organization.

The CC configuration file consists of several sections described below.

To select the CC backend, the following is required:

"eqasm_compiler" : "eqasm_backend_cc",

resources unused for the CC backend, section may be empty

topology unused for the CC backend, section may be empty

alias unused by OpenQL

hardware_settings is used to configure various hardware settings of the platform as shown below. These settings
affect the scheduling of instructions. Please refer to Platform for a full description and an example.

The following settings are not used by the CC backend:

• hardware_settings/mw_mw_buffer

• hardware_settings/mw_flux_buffer

• hardware_settings/mw_readout_buffer

• hardware_settings/flux_mw_buffer

• hardware_settings/flux_flux_buffer

• hardware_settings/flux_readout_buffer
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• hardware_settings/readout_mw_buffer

• hardware_settings/readout_flux_buffer

• hardware_settings/readout_readout_buffer

All settings related to the CC backend are in section hardware_settings/eqasm_backend_cc of the config-
uration file. This section is divided into several subsections as shown below.

Instrument definitions

Subsection instrument_definitions defines immutable properties of instruments, i.e. independent of the
actual control setup:

1 "instrument_definitions": {
2 "qutech-qwg": {
3 "channels": 4,
4 "control_group_sizes": [1, 4],
5 },
6 "zi-hdawg": {
7 "channels": 8,
8 "control_group_sizes": [1, 2, 4, 8], // NB: size=1 needs special treatment of

→˓waveforms because one AWG unit drives 2 channels
9 },

10 "qutech-vsm": {
11 "channels": 32,
12 "control_group_sizes": [1],
13 },
14 "zi-uhfqa": {
15 "channels": 9,
16 "control_group_sizes": [1],
17 }
18 }, // instrument_definitions

Where:

• channels defines the number of logical channels of the instrument. For most instruments there is one logical
channel per physical channel, but the ‘zi-uhfqa’ provides 9 logical channels on one physical channel pair.

• control_group_sizes states possible arrangements of channels operating as a vector

Control modes

Subsection control_modes defines modes to control instruments. These define which bits are used to control
groups of channels and/or get back measurement results:

1 "control_modes": {
2 "awg8-mw-vsm-hack": { // ZI_HDAWG8.py::cfg_codeword_

→˓protocol() == 'microwave'. Old hack to skip DIO[8]
3 "control_bits": [
4 [7,6,5,4,3,2,1,0], // group 0
5 [16,15,14,13,12,11,10,9] // group 1
6 ],
7 "trigger_bits": [31]
8 },
9 "awg8-mw-vsm": { // the way the mode above should have

→˓been

(continues on next page)
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10 "control_bits": [
11 [7,6,5,4,3,2,1,0], // group 0
12 [15,14,13,12,11,10,9,8] // group 1
13 ],
14 "trigger_bits": [31]
15 },
16 "awg8-mw-direct-iq": { // just I&Q to generate microwave

→˓without VSM. HDAWG8: "new_novsm_microwave"
17 "control_bits": [
18 [6,5,4,3,2,1,0], // group 0
19 [13,12,11,10,9,8,7], // group 1
20 [22,21,20,19,18,17,16], // group 2. NB: starts at bit 16 so

→˓twin-QWG can also support it
21 [29,28,27,26,25,24,23] // group 4
22 ],
23 "trigger_bits": [31]
24 },
25 "awg8-flux": { // ZI_HDAWG8.py::cfg_codeword_

→˓protocol() == 'flux'
26 // NB: please note that internally one AWG unit handles 2 channels, which

→˓requires special handling of the waveforms
27 "control_bits": [
28 [2,1,0], // group 0
29 [5,4,3],
30 [8,7,6],
31 [11,10,9],
32 [18,17,16], // group 4. NB: starts at bit 16 so

→˓twin-QWG can also support it
33 [21,20,19],
34 [24,23,22],
35 [27,26,25] // group 7
36 ],
37 "trigger_bits": [31]
38 },
39 "awg8-flux-vector-8": { // single code word for 8 flux

→˓channels.
40 "control_bits": [
41 [7,6,5,4,3,2,1,0]
42 ],
43 "trigger_bits": [31]
44 },
45 "uhfqa-9ch": {
46 "control_bits": [[17],[18],[19],[20],[21],[22],[23],[24],[25]], //

→˓group[0:8]
47 "trigger_bits": [16],
48 "result_bits": [[1],[2],[3],[4],[5],[6],[7],[8],[9]], //

→˓group[0:8]
49 "data_valid_bits": [0]
50 },
51 "vsm-32ch":{
52 "control_bits": [
53 [0],[1],[2],[3],[4],[5],[6],[7], // group[0:7]
54 [8],[9],[10],[11],[12],[13],[14],[15], // group[8:15]
55 [16],[17],[18],[19],[20],[21],[22],[23], // group[16:23]
56 [24],[25],[26],[27],[28],[28],[30],[31] // group[24:31]
57 ],
58 "trigger_bits": [] // no trigger

(continues on next page)
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59 }
60 }, // control_modes

Where:

• <key> is a name which can be referred to from key ‘instruments/[]/ref_control_mode’

• control_bits defines G groups of B bits, with:

– G determines which the ‘instrument_definitions/<key>/control_group_sizes’ used

– B is an ordered list of bits (MSB to LSB) used for the code word

• trigger_bits vector of bits used to trigger the instrument. Must either be size 1 (common trigger) or size
G (separate trigger per group)

FIXME: examples * result_bits reserved for future use * data_valid_bits reserved for future use

Signals

Subsection signals provides a signal library that gate definitions can refer to:

1 "signals": {
2 "single-qubit-mw": [
3 { "type": "mw",
4 "operand_idx": 0,
5 "value": [
6 "{gateName}-{instrumentName}:{instrumentGroup}-gi",
7 "{gateName}-{instrumentName}:{instrumentGroup}-gq",
8 "{gateName}-{instrumentName}:{instrumentGroup}-di",
9 "{gateName}-{instrumentName}:{instrumentGroup}-dq"

10 ]
11 },
12 { "type": "switch",
13 "operand_idx": 0,
14 "value": ["dummy"] // NB: no actual

→˓signal is generated
15 }
16 ],
17 "two-qubit-flux": [
18 { "type": "flux",
19 "operand_idx": 0, // control
20 "value": ["flux-0-{qubit}"]
21 },
22 { "type": "flux",
23 "operand_idx": 1, // target
24 "value": ["flux-1-{qubit}"]
25 }
26 ]
27 }, // signals

Where:

• <key> is a name which can be referred to from key ‘instructions/<>/cc/ref_signal’. It defines an array of records
with the fields below:

– type defines a signal type. This is used to select an instrument that provides that signal type
through key ‘instruments/*/signal_type’. The types are entirely user defined, there is no builtin
notion of their meaning.
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– operand_idx states the operand index of the instruction/gate this signal refers to. Signals
must be defined for all operand_idx the gate refers to, so a 3-qubit gate needs to define 0 through
2. Several signals with the same operand_idx can be defined to select several signal types,
as shown in “single-qubit-mw” which has both “mw” (provided by an AWG) and “switch”
(provided by a VSM)

– value defines a vector of signal names. Supports the following macro expansions:

Instruments

Subsection instruments defines instruments used in this setup, their configuration and connectivity.

1 "instruments": [
2 // readout.
3 {
4 "name": "ro_0",
5 "qubits": [[6], [11], [], [], [], [], [], [], []],
6 "signal_type": "measure",
7 "ref_instrument_definition": "zi-uhfqa",
8 "ref_control_mode": "uhfqa-9ch",
9 "controller": {

10 "name": "cc",
11 "slot": 0,
12 "io_module": "CC-CONN-DIO"
13 }
14 },
15 // ...
16

17 // microwave.
18 {
19 "name": "mw_0",
20 "qubits": [ // data qubits:
21 [2, 8, 14], // [freq L]
22 [1, 4, 6, 10, 12, 15] // [freq H]
23 ],
24 "signal_type": "mw",
25 "ref_instrument_definition": "zi-hdawg",
26 "ref_control_mode": "awg8-mw-vsm-hack",
27 "controller": {
28 "name": "cc",
29 "slot": 3,
30 "io_module": "CC-CONN-DIO-DIFF"
31 }
32 },
33 // ...
34

35 // VSM
36 {
37 "name": "vsm_0",
38 "qubits": [
39 [2], [8], [14], [], [], [], [], [], // [freq L]
40 [1], [4], [6], [10], [12], [15], [], [], // [freq H]
41 [0], [5], [9], [13], [], [], [], [], // [freq Mg]
42 [3], [7], [11], [16], [], [], [], [] // [freq My]
43 ],
44 "signal_type": "switch",
45 "ref_instrument_definition": "qutech-vsm",

(continues on next page)
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46 "ref_control_mode": "vsm-32ch",
47 "controller": {
48 "name": "cc",
49 "slot": 5,
50 "io_module": "cc-conn-vsm"
51 }
52 },
53

54 // flux
55 {
56 "name": "flux_0",
57 "qubits": [[0], [1], [2], [3], [4], [5], [6], [7]],
58 "signal_type": "flux",
59 "ref_instrument_definition": "zi-hdawg",
60 "ref_control_mode": "awg8-flux",
61 "controller": {
62 "name": "cc",
63 "slot": 6,
64 "io_module": "CC-CONN-DIO-DIFF"
65 }
66 },
67 // ...
68 ] // instruments

Where:

• name a friendly name for the instrument

• ref_instrument_definition selects record under ‘instrument_definitions’, which must exits or an error
is raised

• ref_control_mode selects record under ‘control_modes’, which must exits or an error is raised

• signal_type defines which signal type this instrument instance provides.

• qubits G groups of 1 or more qubits. G must match one of the available group sizes of ‘instru-
ment_definitions/<ref_instrument_definition>/control_group_sizes’. If more than 1 qubits are stated per group
- e.g. for an AWG used in conjunction with a VSM - they may not produce conflicting signals at any time slot,
or an error is raised

• controller/slot the slot number of the CC this instrument is connected to

• controller/name reserved for future use

• controller/io_module reserved for future use

Additions to section ‘instructions’

The CC backend extends section “instructions/<key>” with a subsection “cc” as shown in the example below:

1 "ry180": {
2 "duration": 20,
3 "matrix": [ [0.0,1.0], [1.0,0.0], [1.0,0.0], [0.0,0.0] ],
4 "type": "mw",
5 "cc_light_instr": "y",
6 "cc": {
7 "ref_signal": "single-qubit-mw",
8 "static_codeword_override": 2

(continues on next page)
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9 }
10 },
11 "cz_park": {
12 "duration": 40,
13 "matrix": [ [0.0,1.0], [1.0,0.0], [1.0,0.0], [0.0,0.0] ],
14 "type": "flux",
15 "cc_light_instr": "cz",
16 "cc": {
17 "signal": [
18 { "type": "flux",
19 "operand_idx": 0, // control
20 "value": ["flux-0-{qubit}"]
21 },
22 { "type": "flux",
23 "operand_idx": 1, // target
24 "value": ["flux-1-{qubit}"]
25 },
26 { "type": "flux",
27 "operand_idx": 2, // park
28 "value": ["park_cz-{qubit}"]
29 }
30 ],
31 "static_codeword_override": 1
32 }
33 }

Where:

• cc/ref_signal points to a signal definition in hardware_settings/eqasm_backend_cc/
signals, which must exist or an error is raised

• cc/signal defines a signal in place, in an identical fashion as hardware_settings/
eqasm_backend_cc/signals

• cc/static_codeword_override provides a user defined codeword for this instruction. Currently, this
key is compulsory, but in the future, codewords will be assigned automatically to make better use of limited
codeword space

The following standard OpenQL fields are used:

• <key> name for the instruction. The following syntaxes can be used for instruction names:

– “<name>”

– “<name><qubits>”

• duration duration in [ns]

• matrix the process matrix. Required, but only used if optimization is enabled

• type instruction type used by scheduler, one of the builtin names “mw”, “flux” or “measure”. Has no relation
with signal type definition of CC backend, even though we use the same string values there

• cc_light_instr required by scheduler.

• latency optional instruction latency in [ns], used by scheduler

• qubits optional

The following fields in ‘instructions’ are not used by the CC backend:

• cc_light_instr_type FIXME: is used in scheduler.h
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• cc_light_cond

• cc_light_opcode

• cc_light_codeword

• cc_light_left_codeword

• cc_light_right_codeword

• disable_optimization not implemented in OpenQL

Converting quantum gates to instrument codewords

FIXME: TBW

8.5.2 Compiler options

FIXME: TBW

8.5.3 CC backend output files

FIXME: TBW: .vq1asm, .vcd

8.5.4 Standard OpenQL features

FIXME: just refer to relevant section. Kept here until we’re sure this has been absorbed elsewhere

Parametrized gate-decomposition

Parametrized gate decompositions can be specified in gate_decomposition section, as shown below:

“rx180 %0” : [“x %0”]

Based on this, k.gate(‘rx180’, 3) will be decomposed to x(q3). Similarly, multi-qubit gate-decompositions can be
specified as:

“cnot %0,%1” : [“ry90 %0”, “cz %0,%1”, “ry90 %1”]

Specialized gate-decomposition

Specialized gate decompositions can be specified in gate_decomposition section, as shown below:

“rx180 q0” : [“x q0”] “cz_park q0,q1” : [“cz q0,q1”, “park q3”]

8.6 CBox Platform

Details of configuration file for CBox hardware platform. [TBD]
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Compiler

To compile a program, the user needs to configure a compiler first. Until version 0.8, this program compilation
was done using a monolithic hard-coded sequence of compiler passes inside the program itself when program.
compile() function was called. This is the legacy operation mode, which is currently described in the Program
documentation page. However, starting with version 0.8.0.dev1, the program has the ability to configure its own pass
sequence using the Compiler API. To illustrate this interface, consider the following example:

from openql import openql as ql

c = ql.Compiler("testCompiler")

c.add_pass_alias("Writer", "outputIR")
c.add_pass("Reader")
c.add_pass("RotationOptimizer")
c.add_pass("DecomposeToffoli")
c.add_pass_alias("CliffordOptimize", "clifford_prescheduler")
c.add_pass("Scheduler")
c.add_pass_alias("CliffordOptimize", "clifford_postscheduler")
c.add_pass_alias("Writer","scheduledqasmwriter")

c.set_pass_option("ALL", "skip", "no");
c.set_pass_option("Reader", "write_qasm_files", "no")
c.set_pass_option("RotationOptimizer", "write_qasm_files", "no")
c.set_pass_option("outputIR", "write_qasm_files", "yes");
c.set_pass_option("scheduledqasmwriter", "write_qasm_files", "yes");
c.set_pass_option("ALL", "write_report_files", "no");

..... # definition of Platform and Program p .....

c.compile(p)

Note The code for the platform and the program creation as described earlier (for more information on
that, please see Creating your first Program) has been removed for clarity purposes.

The example code shows that we can add a pass under its real name, which should be the exact pass name as defined
in the compiler (for a complete list available pass names, please consult Compiler Passes), or under an alias name to
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be defined by the OpenQL user. This last name can be any string and should be used to set pass specific options. This
options setting is shown last, where current pass option choices represent either the “ALL” target or a given pass name
(either its alias or its real name). Curently, only the <write_qasm_files>, <write_report_files>, and <skip> options
are implemented for individual passes. The other options should be accessed through the global option settings of the
program.

Finally, to create and use a new compiler pass, the developer would need to implement three steps:

1) Inherit from the AbstractPass class and implement the following function

virtual void runOnProgram(ql::quantum_program *program)

2) Register the pass by giving it a pass name in

AbstractPass* PassManager::createPass(std::string passName, std::string aliasName)

3) Add it in a custom compiler configuration using the Compiler API

Currently, the following passes are available in the compiler class and can be enabled by using the following pass
identifiers to map to the existing passes.

Pass Identifier Compiler Pass
Reader Program Reading (currently cQASMReader)
Writer Qasm Printer
RotationOptimizer Optimizer
DecomposeToffoli Decompose Toffoli
Scheduler Scheduling
BackendCompiler Composite pass calling either CC or CC-Light passes
ReportStatistics Report Statistics
CCLPrepCodeGeneration CC-Light dependent code generation preparation
CCLDecomposePreSchedule Decomposition before scheduling (CC-Light dependent)
WriteQuantumSim Print QuantumSim program
CliffordOptimize Clifford Optimization
Map Mapping
RCSchedule Resource Constraint Scheduling
LatencyCompensation Latency Compensation
InsertBufferDelays Insert Buffer Delays
CCLDecomposePostSchedule Decomposition before scheduling (CC-Light dependent)
QisaCodeGeneration QISA generation (CC-Light dependent)
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Compiler Passes

Most of the passes in their function and implementation are platform independent, deriving their platform dependent
information from options and/or the configuration file. This holds also for mapping, although one wouldn’t think so
first, since it is called from the platform dependent part of the compiler now. All passes like this are summarized below
first and are described extensively platform independently later in this section.

Note Some passes are called from the platform independent compiler, other ones from the back-end
compiler. That is a platform dependent issue and therefore described with the platform.

Their description includes:

• their API, including their name: in general, apart from their name, they take all parameters from the program
context which includes the configuration file and the platform, the options, and the vector of kernels with their
circuits

• the Intermediate Representation (IR) they expect as input and what they update in the IR; in general, they should
accept any IR, so all types of gates, quantum as well as classical

• the particular options they listen to; there usually is an option to disable it; also there are ways to dump the IR
before and/or after it although this is not generally possible yet

• the function they perform, in terms of the IR and the options

Other passes, of which the implementation (i.e. source code etc.) is platform dependent, can be found with the
platforms. An example of the latter passes is QISA (i.e. instruction) generation in CC-Light. In the lists below, these
passes are indicated to be platform dependent.

Passes have some general facilities available to them; these are not passes themselves since they don’t transform the
IR. Examples of such facilities are:

• ql::report::report_qasm(prog_name, kernels, platform, relplacename, passname):
Writing the IR out in an external representation (QASM 1.0) to a file when option write_qasm_files
has the value yes. The file is stored in the default output directory; the name of the file is composed from
the program name (prog_name), the place relative to the pass (relplacename), and the pass name
(passname), all separated by _, and the result suffixed by .qasm. The pass indicates before or after
which the IR is written to file. The place relative to the pass indicates e.g. in or out, meaning before
or after the pass, respectively. In this way, multiple qasm files can be written per compile, and be easily
related to the point in compilation where the writing was done.

53



OpenQL

• ql::report::report_bundles(prog_name, kernels, platform, relplacename, passname):
Identical to report_qasm but the QASM is written as bundles.

• ql::report::report_statistics(prog_name, kernels, platform, relplacename, passname, prefix):
Identical to report_qasm but the IR itself is not written but a summary of it, e.g. the number of kernels,
the numer of one-qubit, two-qubit and more-qubit gates, which qubits were used and which not, the wall
clock time that compilation took until this point, etc. This is done for each kernel separately and for
the whole program; additional interfaces are available for making the individual reports and adding pass
specific lines to the reports. The prefix string is prepended to each line in the report file, e.g. to make
it qasm comment. Furthermore the suffix is .report. And writing the report is only done when option
write_report_files has the value yes.

• ql::utils::write_file(filename, contentstring): Writing a content string to the file with
given filename in the default output directory for off-line inspection. An example is writing (in dot
format) the gate dependence graph which is a scheduling pass internal data structure. The writing to a file
of a string is a general facility but the generation of the string representation of the internal data structure
is pass dependent. The options controlling this are also pass specific.

Writing the IR out to a file in a form suitable for a particular subsequent tool such as quantumsim is considered code
generation for the quantumsim platform and is therefore considered a pass.

Note A compiler pass is not something defined in OpenQL. It should be. Passes then have a standard API,
standard intermediate representation dumpers before and after them, a standard way to include them
in the compiler. We could have the list of passes to call be something defined in the configuration
file, perhaps with the places where we want to have dumps and reports.

10.1 Summary of compiler passes

Compiler passes in OpenQL are the compiler elements that, when called one after the other, gradually transform the
OpenQL input program to some platform defined output program. The following passes are available and usually
called in this order. More detailed information on each can be found in the sections below.

When it is indicated that a pass is CC-Light (or any other platform) dependent, it means that its implementation with
respect to source code is platform dependent. A pass of which the source code is platform independent, can behave
platform dependently by its parameterization by the platform configuration file.

• program reading not a real pass now; it covers the code that for a particular program sets its options, con-
nects it to a platform, defines its program parameters such as number of qubits, defines its kernels, and
defines its gates; in the current OpenQL implementation this is all code upto and including the call to
p.compile(). See Input external representation and Creating your first Program.

• optimize attempts to find contigous sequences of quantum gates that are equivalent to identity (within some
small epsilon which currently is 10 to the power -4) and then take those sequences out of the circuit; this
relies on the function of each gate to be defined in its mat field as a matrix. See Optimization.

• decompose_toffoli each toffoli gate in the IR is replaced by a gate sequence with at most two-qubit gates;
depending on the value of the equally named option; it does this in the Neilsen and Chuang way (NC), or
in the way as in https://arxiv.org/pdf/1210.0974,pdf (AM). See Decomposition.

• unitary decomposition the unitary decomposition pass is not generally available yet; it is in some private
OpenQL branch. See Decomposition.

• scheduling of each kernel’s circuit the gates are scheduled at a particular cycle starting from 0 (by filling in
the gate’s cycle attribute) that matches the gates’ dependences, their duration, the constraints imposed
by their resource use, the buffer values defined for the platform, and the latency value defined for each
gate; multiple gates may start in the same cycle; in the resulting circuits (which are vectors of pointers
to gate) the gates are ordered by their cycle value. The schedulers also produce a bundled version of
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each circuit: the circuit is then represented by a vector of bundles in which each bundle lists the gates
that are to be started in the same cycle; each bundle further contains sublists that combines gates with
the same operation but with different operands. The resource-constrained and non-constrained versions of
the scheduler have different entry points (currently). The latter only considers the gates’ dependences and
their duration, which is sufficient as input to QX. Next to the above necessary constraints, the remaining
freedom is defined by a scheduling strategy which is defined by the scheduler option value: ASAP,
ALAP and some other options. See Scheduling.

• decomposition before scheduling (CC-Light dependent) classical non-primitive gates are decomposed to
primitives (e.g. eq is transformed to cmp followed by an empty cycle and an fbr_eq); after measure-
ments an fmr is inserted provided the measurement had a classical register operand. See Decomposition.

• clifford optimization dependency chains of one-qubit clifford gates operating on the same qubit are replaced
by equivalent sequences of primitive gates when the latter leads to a shorter execution time. Clifford
gates are recognized by their name and use is made of the property that clifford gates form a group of 24
elements. Clifford optimization is called before and after the mapping pass. See Optimization.

• mapping the circuits of all kernels are transformed such that for any two-qubit gate the operand qubits are
connected (are NN, Nearest Neighbor) in the platform’s topology; this is done by a kernel-level initial
placement pass and when it fails, by a subsequent heuristic; the heuristic essentially transforms each circuit
from start to end; doing this, it maintains a map from virtual (program) qubits to real qubits (v2r); each
time that it encounters a two-qubit gate that in the current map is not NN, it inserts swap gates before this
gate that gradually make the operand qubits NN; when inserting a swap, it updates the v2r map accordingly.
There are many refinements to this algorithm that can be controlled through options and the configuration
file. It is not complete in the sense that it ignores transfer of the v2r map between kernels. See Mapping.

• rcscheduler resource constraints are taken into account; the result reflects the timing required during execution,
i.e. also taking into account any further non-OpenQL passes and run-time stages such as (for CC_Light):

– QISA assembly

– classical code execution (from here on these passes are executed as run-time stages)

– quantum microcode generation

– micro operation to signal and microwave conversion

– execution unit reprogramming and inter operation reset times

– signal communication line delays

– execution time and feed-back delays

The resulting circuit is stored in the usual manner and as a sequence of bundles. See Scheduling.

• decomposition after scheduling (CC-Light dependent) two-qubit flux gates are decomposed to a series of
one-qubit flux gates of the form sqf q0 to be executed in the same cycle; this is done only when the
cz_mode option has the value auto; such a gate is generated for each operand and for all qubits that
need to be detuned; see the detuned_qubits resource description in the CC-Light platform configuration
file for details. See Decomposition.

• opcode and control store file generation (CC-Light dependent) currently disabled as not used by CC-Light

• write_quantumsim_program writes the current IR as a python script that interfaces with quantumsim

• write_qsoverlay_program writes the current IR as a python script that interfaces with the qsoverlay module
of quantumsim

• QISA generation (CC-Light dependent)

– bundle to QISA translation

* deterministic sorting of gates per bundle
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* instruction prefix and wait instruction insertion

* classical gate to QISA classical instruction translation

* SOMQ generation and mask to mask register assignment (should include mask instruction
generation)

* insertion of wait states between meas and fmr (should be done by scheduler)

– mask instruction generation

– QISA file writing

See Platform.

10.2 Decomposition

Decomposition of gates [TBD]

10.2.1 Control decomposition

Entry points

The following entry points are supported:

• entry() TBD

Input and output intermediate representation

TBD.

Options

The following options are supported:

• option TBD

Function

TBD

10.2.2 Unitary decomposition

Unitary decomposition allows a developer of quantum algorithms to specify a quantum gate as a unitary matrix, which
is then split into a circuit consisting of ry, rz and cnot gates.

To use it, define a Unitary with a name and a (complex) list containing all the values in the unitary matrix in order
from the top left to the bottom right. The matrix needs to be unitary to be a valid quantum gate, otherwise an error will
be raised by the compilation step.

Name operands C++ type example
Unitary name string “U_name”

unitary matrix vector<complex<double>> [0.5+0.5j,0.5-0.5j,0.5-0.5j,0.5+0.5j]
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The unitary is first decomposed, by calling the .decompose() function on it. Only then can it be added to the kernel
as a normal gate to the number of qubits corresponding to the unitary matrix size. This looks like:

u1 = ql.Unitary("U_name", [0.5+0.5j,0.5-0.5j,0.5-0.5j,0.5+0.5j])
u1.decompose()
k.gate(u1, [0])

Which generates this circuit:

rz q[0], -1.570796
ry q[0], -1.570796
rz q[0], 1.570796

The circuit generated might also have different angles, though not different gates, and result in the same effect on the
qubits, this is because a matrix can have multiple valid decompositions.

For a two-qubit unitary gate or matrix, it looks like:

list_matrix = [1, 0 , 0 , 0,
0, 0.5+0.5j, 0.5-0.5j, 0,
0, 0.5-0.5j, 0.5+0.5j, 0,
0, 0 , 0 , 1]

u1 = ql.Unitary("U_name", list_matrix)
u1.decompose()
k.gate(u1, [0,1])

This generates a circuit of 24 gates of which 6 cnots, spanning qubits 0 and 1. The rest are ry and rz gates on both
qubits, which looks like this:

rz q[0], -0.785398
ry q[0], -1.570796
rz q[0], -3.926991
rz q[1], -0.785398
cnot q[0],q[1]
rz q[1], 1.570796
cnot q[0],q[1]
rz q[0], 2.356194
ry q[0], -1.570796
rz q[0], -3.926991
ry q[1], 0.785398
cnot q[0],q[1]
ry q[1], 0.785398
cnot q[0],q[1]
rz q[0], -0.000000
ry q[0], -1.570796
rz q[0], 3.926991
rz q[1], 0.785398
cnot q[0],q[1]
rz q[1], -1.570796
cnot q[0],q[1]
rz q[0], 3.926991
ry q[0], -1.570796
rz q[0], -2.356194

The unitary gate has no limit in how many qubits it can apply to. But the matrix size for an n-qubit gate scales as
2^n*2^n, which means the number of elements in the matrix scales with 4^n. This is also the scaling rate of the
execution time of the decomposition algorithm and of the number of gates generated in the circuit. Caution is advised
for decomposing large matrices both for compilation time and for the size of the resulting quantum circuit.
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More detailed information can be found at http://resolver.tudelft.nl/uuid:9c60d13d-4f42-4d8b-bc23-5de92d7b9600

10.2.3 Decomposition before scheduling

Entry points

The following entry points are supported:

• entry() TBD

Input and output intermediate representation

TBD.

Options

The following options are supported:

• option TBD

Function

TBD

10.2.4 Decomposition after scheduling

Entry points

The following entry points are supported:

• entry() TBD

Input and output intermediate representation

TBD.

Options

The following options are supported:

• option TBD

Function

TBD
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10.2.5 Decompose_toffoli

Entry points

The following entry points are supported:

• entry() TBD

Input and output intermediate representation

TBD.

Options

The following options are supported:

• option TBD

Function

TBD

10.3 Optimization

Optimization of circuits [TBD]

10.3.1 Optimize

attempts to find contigous sequences of quantum gates that are equivalent to identity (within some small epsilon which
currently is 10 to the power -4) and then take those sequences out of the circuit; this relies on the function of each gate
to be defined in its mat field as a matrix.

Entry points

The following entry points are supported:

• entry() TBD

Input and output intermediate representation

TBD.

Options

The following options are supported:

• option TBD
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Function

TBD

10.3.2 Clifford optimization

dependency chains of one-qubit clifford gates operating on the same qubit are replaced by equivalent sequences of
primitive gates when the latter leads to a shorter execution time. Clifford gates are recognized by their name and use
is made of the property that clifford gates form a group of 24 elements. Clifford optimization is called before and after
the mapping pass.

Entry points

The following entry points are supported:

• entry() TBD

Input and output intermediate representation

TBD.

Options

The following options are supported:

• option TBD

Function

TBD

10.4 Scheduling

Of each kernel’s circuit the gates are scheduled at a particular cycle starting from 0 (by filling in the gate’s cycle
attribute) that matches the gates’ dependences, their duration, the constraints imposed by their resource use, the buffer
values defined for the platform, and the latency value defined for each gate; multiple gates may start in the same
cycle; in the resulting circuits (which are vectors of pointers to gate) the gates are ordered by their cycle value. The
schedulers also produce a bundled version of each circuit; see Circuits and bundles in the internal representation.

The resource-constrained and non-constrained versions of the scheduler have different entry points (currently). The
latter only considers the gates’ dependences and their duration, which is sufficient as input to QX. Next to the above
necessary constraints, the remaining freedom is defined by a scheduling strategy which is defined by the scheduler
option value: ASAP, ALAP and some other options.

10.4.1 Entry points

The following two entry points are supported, one for the non-constrained and one for the resource-constrained sched-
uler:
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• p.schedule() In the context of program object p, this method schedules the circuits of the kernels of the
program, according to a strategy specified by the scheduling options, but without taking resource constraints,
buffers and latency compensation of the platform into account.

• bundles = cc_light_schedule_rc(circuit, platform, num_qubits, num_creg) In
the context of the cc_light_eqasm_compiler, a derived class of the eqasm_compiler class, in its
compile(prog_name, kernels, platform) method, inside a loop over the specified kernels, the
resource-constrained scheduler is called to schedule the specified circuit, according to a strategy specified by
the scheduling options, and taking resource constraints, buffers and latency compensation of the platform into
account. It creates a bundled version of the IR and returns it.

Note These entry points need to be harmonized to fit in the generalized pass model: same class, program-
level interface, no result except in IR, buffer and latency compensation split off to separate passes.

The above entry points each create a sched object of class Scheduler and call a selection of its methods:

• sched.init(circuit, platform, num_qubits, num_creg) A dependence graph representa-
tion of the specified circuit is constructed. This graph is a Directed Acyclic Graph (DAG). In this graph, the
nodes represent the gates and the directed edges the dependences. The top of the graph is a newly created
SOURCE gate, the bottom is a newly created SINK gate. With respect to dependences, the SOURCE and SINK
gates behave as if they update all qubits and classical registers with 0 duration. Gates are added in the order of
presence in the circuit and linked in dependence chains according to their operation and operands.

The nodes have as attributes (apart from the gate’s attributes):

– name with the qasm string representation of the gate (such as cnot q[1],q[2])

The edges have as attributes:

– weight representing the number of cycles needed from the start of execution of the gate at the source
of the edge, to the start of execution of the gate at the target of the edge; this value is initialized from the
duration attribute of the gate

– cause representing the qubit or classical register causing the dependence

– depType representing the type of the dependence

The latter two attributes are currently only used internally in the dependence graph construction.

This sched.init method is called by both entry points for each circuit of the program.

• bundles = sched.schedule_asap(sched_dot) The cycle attributes of the gates are initialized con-
sistent with an ASAP (i.e. downward) walk over the dependence graph. Subsequently, the gates in the circuit
are sorted by their cycle value; and the bundler called to produce a bundled version of the IR to return.

This method is called by p.schedule() for each circuit of the program when non-uniform ASAP scheduling.

• bundles = sched.schedule_alap(sched_dot) The cycle attributes of the gates are initialized con-
sistent with an ALAP (i.e. upward) walk over the dependence graph. Subsequently, the gates in the circuit are
sorted by their cycle value; and the bundler called to produce a bundled version of the IR to return.

This method is called by p.schedule() for each circuit of the program when non-uniform ALAP scheduling.

• bundles = sched.schedule_alap_uniform() The cycle attributes of the gates are initialized con-
sistent with a uniform ALAP schedule: this modified ALAP schedule aims to have an equal number of gates
starting in each non-empty bundle. Subsequently, the gates in the circuit are sorted by their cycle value; and the
bundler called to produce a bundled version of the IR to return.

This method is called by p.schedule() for each circuit of the program when uniform and ALAP scheduling.

• bundles = sched.schedule_asap(resource_manager, platform, sched_dot)
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This method is called by cc_light_schedule_rc after calling sched.init, and creation of the resource
manager for each circuit of the program when non-uniform ASAP scheduling. See Function for a more extensive
description.

• bundles = sched.schedule_alap(resource_manager, platform, sched_dot)

This method is called by cc_light_schedule_rc after calling sched.init, and creation of the resource
manager for each circuit of the program when non-uniform ALAP scheduling. See Function for a more extensive
description.

In the sched_dot parameter of the methods above a dot representation of the dependence graph of the kernel’s
circuit is constructed, in which the gates are ordered along a timeline according to their cycle attribute.

10.4.2 Input and output intermediate representation

The schedulers expect kernels with or without a circuit. When with a circuit, the cycle attribute need not be
valid. Gates that are supported on input are one-qubit measure, no-operand display, any classical gate, cnot,
cz/cphase, and any other quantum and scheduling gate.

They produce a circuit with the same gates (but potentially differently ordered). The cycle attribute of each gate has
been defined. The gates in the circuit are ordered with non-decreasing cycle value. The cycle values are consistent
with all constraints imposed during scheduling and with the scheduling strategy that has been specified through the
options or by selection of the entry point.

Note There are no gates for control flow; so these are not defined in the configuration file; these are not
scheduled in the usual way; these are not translated to QASM and external representations in the
usual way. See Kernel.

10.4.3 Options

The following options are supported:

• scheduler With the value ASAP, the scheduler creates a forward As Soon As Possible schedule of the circuit.
With the value ALAP, the scheduler creates a backward As Soon As Possible schedule which is equivalent to a
forward As Late As Possible schedule of the circuit. Default value is ALAP.

• scheduler_uniform With the value yes, the scheduler creates a uniform schedule of the circuit. With the
value no, it doesn’t. Default value is no.

• scheduler_commute With the value yes, the scheduler exploits commutation rules for cnot, and
cz/cphase to have more scheduling freedom to aim for a shorter latency circuit. With the value no, it doesn’t.
Default value is no.

• output_dir The value is the name of the directory which should be present in the current directory during
execution of OpenQL, where all output and report files of OpenQL are created. Default value is test_output.

• write_qasm_files When it has the value yes, p.schedule produces in the output directory a bundled
QASM (see Output external representation) of all kernels in a single file with as name the name of the program
followed by _scheduled.qasm.

• print_dot_graphs When it has the value yes, p.schedule produces in the output directory in multiple
files each with as name the name of the kernel followed by _dependence_graph.dot a dot representation
of the dependence graph of the kernel’s circuit. Furthermore it produces in the output directory in multiple files
each with as name the name of the kernel followed by the value of the scheduler option and _scheduled.
dot a dot representation of the dependence graph of the kernel’s circuit, in which the gates are ordered along
a timeline according to their cycle attribute.
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Note The options don’t discriminate between the prescheduler and the rcscheduler although these could
desire different option values. Also there is not an option to skip this pass.

10.4.4 Function

Scheduling of a circuit starts with creation of the dependence graph; see Entry points for its definition.

Gates that are supported on input are one-qubit measure, no-operand display, any classical gate, cnot,
cz/cphase, and any other quantum and scheduling gate. With respect to dependence creation, the latter ones are
assumed to use and update each of their operands during the operation; and the former ones each have a specific
definition regarding the use and update of their operands:

• measure also updates its corresponding classical register;

• display and the classical gates use/update all qubits and classical registers (so these act as barriers);

• cnot uses and doesn’t update its control operand, and it commutes with cnot/cz/cphase with equal control
operand; cnot uses and updates its target operand, it commutes with cnot with equal target operand;

• cz/cphase commutes with cnot/cz/cphase with equal first operand, and it commutes with cz/cphase
with equal second operand. This commutation is exploited to aim for a shorter latency circuit when the
scheduler_commute option is in effect.

When scheduling without resource constraints the cycle attributes of the gates are initialized consistent with an ASAP
(i.e. downward/forward) or ALAP (i.e. upward/backward) walk over the dependence graph. Subsequently, the gates
in the circuit are sorted by their cycle value; and the bundler called to produce a bundled version of the IR to return.

The remaining part of this subsection describes scheduling with resource constraints.

The implementation of this list scheduler is parameterized on doing a forward or a backward schedule. The former is
used to create an ASAP schedule and the latter is used to create an ALAP schedule. We here describe the forward case
because that is easier to grasp and later come back on the backward case.

A list scheduler maintains at each moment a list of gates that are available for being scheduled because they are not
blocked by dependences on non-scheduled gates. Not all gates that are available (not blocked by dependences on
non-scheduled gates) can actually be scheduled. It must be made sure in addition that those scheduled gates that it
depends on, actually have completed their execution (using its duration) and that the resources are available for
it. Furthermore, making a selection from the gates that remain after ignoring these, determines the optimality of the
scheduling result. The implemented list scheduler is a critical path scheduler, i.e. it prefers to schedule the most
critical gate first. The criticality of a gate estimates the effect that delaying scheduling the gate has on the latency of
the resulting circuit, and is determined by computing the length of the longest dependence chain from the gate to the
SINK gate; the higher this value, the higher the gate’s scheduling priority in the current cycle is.

The scheduler relies on the dependence graph representation of the circuit. At the start only the SOURCE gate is
available. Then one by one, according to a criterion, a gate is selected from the list of available ones and added to the
schedule. Having scheduled the gate, it is taken out of the available list; after having scheduled a gate, some new gates
may become available because they don’t depend on non-scheduled gates anymore; those gates are found and put in
the available list of gates. This continues, filling cycle by cycle from low to high, until the available list gets empty
(which happens after scheduling the last gate, the SINK gate).

Above it was mentioned that a gate can only be scheduled in a particular cycle when the resources are available for
it. In this, the scheduler relies on the resource manager of the platform. The latter was created and initialized from
the platform configuration file before scheduling started. Please refer to CC-Light Platform for a description of the
specification of resources of the CC-Light platform. And furthermore note that only the resources that are specified
in the platform configuration file determine the resource constraints that apply to the scheduler; recall that for each
resource type, several resources can be specified, each of which typically has some kind of exclusive use. The simplest
one is the qubits resource type of which there are as many resources as there are qubits. The resource manager
maintains a so-called machine state that describes the occupation status of each resource. This resource state
typically consists of two elements: the operation type that is using this resource; and the occupation period, which
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is described by a pair of cycle values, representing the first cycle that it is occupied, and the first cycle that it is free
again, respectively.

If a gate is to be scheduled at cycle t, then all the resources for executing the gate are checked to be available from
cycle t till (and not including) t plus the gate’s duration in cycles; and when actually committing to scheduling
the gate at cycle t, all its resources are set to occupied for the duration of its execution. The resource manager
offers methods for this check (bool rm.available()) and commit (rm.reserve()). Doing this check and
committing for a particular gate, some additional gate attributes may be required by the resource manager. For the
CC-Light resource manager, these additional gate attributes are:

• operation_name initialized from the configuration file cc_light_instr gate attribute representing the
operation of the gate; it is used by the qwgs resource type only; two gates having the same operation_name
are assumed to use the same wave form

• operation_type initialized from the configuration file type gate attribute representing the kind of opera-
tion of the gate: mw for rotation gates, readout for measurement gates, and flux for one and two-qubit flux
gates; it is used by each resource type

This concludes the description of the involvement of the resource manager in the scheduling of a gate.

The list scheduler algorithm uses a so-called availability list to represent gates that can be scheduled; see above. When
the available list becomes empty, all cycle values were assigned and scheduling is almost done. The gates in the circuit
are then first sorted on their cycle value.

Then latency compensation is done: for each gate for which in the platform configuration file a latency attribute
value is specified, the gate’s cycle value is incremented by this latency value converted to cycles; the latter is usually
negative. This mechanism allows to start execution of a gate earlier to compensate for a relative delay in the control
electronics that is involved in executing the gate. So in theory, in the quantum hardware, gates which before latency
compensation had the same cycle value, also execute in the same cycle. After this, the gates in the circuit are again
sorted on their cycle value.

After the bundler has been called to produce a bundled IR, any buffer delays are inserted. Buffer delays can be
specified in the platform configuration file in the hardware_settings section. Insertion makes use of the type
attribute of the gate in the platform configuration file, the one which can have the values mw, readout and flux.
For each bundle, it checks for each gate in the bundle, whether there is a non-zero buffer delay specified with a gate
in the previous bundle, and if any, takes the maximum of those buffer delays, and adds it (converted to cycles) to the
bundle’s start_cycle attribute. Moreover, when the previous bundle got shifted in time because of earlier bundle
delays, the same shift is applied first to the current bundle. In this way, the schedule gets stretched for all qubits at the
same time. This is a valid thing to do and doesn’t invalidate dependences nor resource constraints.

Note Buffer insertion only has effect on the start_cycle attributes of the bundles and not on the
cycle attributes of the gates. It would be better to do buffer insertion on the circuit and to do
bundling afterwards, so that circuit and bundles are consistent.

In the backward case, the scheduler traverses the dependence graph bottom-up, scheduling the SINK gate first. Gates
become available for scheduling at a particular cycle when at that cycle plus its duration all its dependent gates have
started execution. And scheduling finishes when the available list is empty, after having scheduled the SOURCE gate.
In this, cycles are decremented after having scheduled SINK at some very high cycle value, and later, after having
scheduled SOURCE, the cycle values of the gates are consistently shifted down so that SOURCE starts at cycle 0. The
resource manager’s state and methods also are parameterized on the scheduling direction.

10.4.5 Scheduling for software platforms

• Scheduling for qx

• Scheduling for quantumsim
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10.4.6 Scheduling for hardware platforms

• Scheduling for CC-Light platform

• Scheduling for CC platform

• Scheduling for CBox platform

This section will document how OpenQL schedules gates for the CC-Light Platform. It will also highlight how
constraints mentioned in CC-Light Platform affect scheduling.

This section will document how OpenQL schedules gates for the CC Platform. It will also higlighted how constraints
mentioned in the platform configuration file affect scheduling.

10.5 Mapping

The circuits of all kernels are transformed such that after mapping for any two-qubit gate the operand qubits are
connected (are NN, Nearest Neighbor) in the platform’s topology; this is done by a kernel-level initial placement and
when it fails, by subsequent heuristic routing and mapping. Both maintain a map from virtual (program) qubits to real
qubits (v2r) and a map from each real qubit index to its state (rs); both are available after each of the two mapping
subpasses.

• initial placement This module attempts to find a single mapping of the virtual qubits of a circuit to the real qubits
(v2r map) of the platform’s qubit topology, that minimizes the sum of the distances between the two mapped
operands of all two-qubit gates in the circuit. The distance between two real qubits is the minimum number
of swaps that is required to move the state of one of the two qubits to the other. It employs a Mixed Integer
Linear Programming (MIP) algorithm to solve the initial placement that is modelled as a Quadratic Assignment
Problem. The module can find a mapping that is optimal for the whole circuit, but because its time-complexity
is exponential with respect to the size of the circuit, this may take quite some computer time. Also, the result is
only really useful when in the mapping found all mapped operands of two-qubit gates are NN. So, there is no
guarantee for success: it may take too long and the result may not be optimal.

• heuristic routing and mapping This module essentially transforms each circuit in a linear scan over the circuit,
from start to end, maintaining the v2r and rs maps. Each time that it encounters a two-qubit gate that in the
current map is not NN, it inserts swap gates before this gate that make the operand qubits NN (this is called
routing the qubits); when inserting a swap, it updates the v2r and rs maps accordingly. There are many
refinements to this algorithm that can be controlled through options and the configuration file. The module will
find the minimum number of swaps to make the mapped operands of each two-qubit gate NN in the mapping that
applies just before it. In the most basic version, it has a linear time-complexity with respect to circuit size and
number of qubits. With advanced search options set, the algorithm may become cubic with respect to number
of qubits. So, it is still scalable and is guaranteed to find a solution.

The implementation is not complete:

• In the presence of multiple kernels with control flow among them, the v2r at the start of each kernel must
match the v2r at the end of all predecessor kernels: this is not implemented. Instead, the v2r at the start of
each kernel is re-initialized freshly, independently of the v2r at the end of predecessor kernels. The current
implementation thus assumes that at the end of each kernel all qubits don’t hold a state that must be preserved
for a subsequent kernel.

10.5.1 Entry points

Mapping is implemented by a class Mapperwith the support of many private other classes among which the scheduler
class for obtaining the dependence graph. The following entry points are supported:
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• Mapper() Constructs a new mapper to be used for the whole program. Initialization is left to the Init
method.

• Mapper.Init(platform) Initialize the mapper for the given platform but independently of a particular
kernel and circuit. This includes checking and initializing the mapper’s representation of the platform’s topology
from the platform’s configuration file.

• Mapper.Map(kernel) Perform mapping on the kernel, i.e. replace the kernel’s circuit by an equivalent but
mapped circuit. Each kernel is mapped independently of any other kernel. Of each gate the cycle attribute is
assigned, and the resulting circuit is scheduled; which constraints are obeyed in this schedule depends on the
mapping strategy (the value of the mapper attribute). In the argument kernel object, the qubit_count
attribute is updated from the number of virtual qubits of the kernel to the number of real qubits as specified by
the platform; this is done because in the mapped circuit the qubit operands of all gates will be real qubit indices
of which the values should be in the range of the valid real qubit indices of the platform.

Furthermore, some reporting of internal mapper statistics is done into attributes of the Mapper object. These
can be retrieved by the caller of Map:

– nswapsadded Number of swaps and moves inserted.

– nmovesadded Number of moves inserted.

– v2r_in Vector with for each virtual qubit index its mapping to a real qubit index (or
UNDEFINED_QUBIT represented by INT_MAX, indicating that the virtual qubit index is not mapped
to a real qubit), after initialization and before initial placement and/or heuristic routing and mapping.

– rs_in Vector with for each real qubit index its state. This vector shows the state after initialization of the
mapper and before initial placement and/or heuristic routing and mapping. State values can be:

* rs_nostate: no statically known quantum state and no dynamically useful quantum state to pre-
serve

* rs_wasinited: known to be in zero base state (|0>)

* rs_hasstate: useful but statically unknown quantum state; must be preserved

– v2r_ip Vector with for each virtual qubit index its mapping to a real qubit index (or
UNDEFINED_QUBIT represented by INT_MAX, indicating that the virtual qubit index is not mapped
to a real qubit), after initial placement but before heuristic routing and mapping.

– rs_ip Vector with for each real qubit index its state (see rs_in above for the values), after initial
placement but before heuristic routing and mapping.

– v2r_out Vector with for each virtual qubit index its mapping to a real qubit index (or
UNDEFINED_QUBIT represented by INT_MAX, indicating that the virtual qubit index is not mapped
to a real qubit), after heuristic routing and mapping.

– rs_out Vector with for each real qubit index its state (see rs_in above for the values), after heuristic
routing and mapping.

10.5.2 Input and output intermediate representation

The mapper expects kernels with or without a circuit. When with a circuit, the cycle attributes of the gates need not
be valid. Gates that are supported on input are one-qubit measure, no-operand display, any classical gate, cnot,
cz/cphase, and any other quantum and scheduling gate. The mapper refuses multi-qubit quantum gates as input
with more than two quantum operands.

The mapper produces a circuit with the same gates but then mapped (see below), with the real qubit operands of two-
qubit gates made nearest-neighbor in the platform’s topology, and with additional quantum gates inserted to implement
the swapping or moving of qubit states. The mapping of any (quantum, classical, etc.) gate entails replacing the virtual
qubit operand indices by the real qubit operand indices corresponding to the mapping of virtual to real qubit indices
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applicable at the time of execution of the gate; furthermore the gate itself (when a quantum gate) is optionally replaced
at the time of its mapping by one or more gates as specified by the platform’s configuration file: if the configuration
file contains a definition for a gate with the name of the original gate with _real appended, then that one is created
and replaces the original gate. Note that when this created gate is defined in the gate_decomposition section,
the net effect is that the specified decomposition is done. When a swap or move gate is created to be inserted in the
circuit, first a swap_real (or move_real) is attempted to be created instead before creating a swap or move; this
also allows the gate to be decomposed to more primitive gates during mapping.

When a kernel’s circuit has been mapped, an optional final decomposition of the mapped gates is done: each gate is
optionally replaced by one or more gates as specified by the platform’s configuration file, by creating a gate with the
name of the original gate with _prim appended, if defined in the configuration file, and replacing the original gate by
it. Note that when this created gate is specified in the configuration file in the gate_decomposition section, the
net effect is that the specified decomposition is done. When in the mapped circuit, swap or move gates were inserted
and swap_prim or move_prim are specified in the configuration file, these are also used to replace the swap or
move at this time.

The cycle attribute of each gate is assigned a valid value. The gates in the circuit are ordered with non-decreasing
cycle value. The cycle values are consistent with the constraints that are imposed during mapping; these are specified
by the mapper option.

The above implies that non-quantum gates are accepted on input and are passed unchanged to output.

10.5.3 Options and Function

The options and corresponding function of the mapper are described.

The options include the proper mapper options and a few scheduler options. The subset of the scheduler options
applies because the mapper uses the dependence graph created by the initialization method of the scheduler. Also see
Options.

Most if not all options can be combined to compose a favorite mapping strategy, i.e. the options are largely indepen-
dent.

With the options, also the effects that they have on the function of the mapper are described.

The options and function are described in the order of their virtual encountering by a particular gate that is mapped.
Please remember that heuristic routing and mapping essentially performs a linear scan over the gates of the circuit to
route the qubits, map and transform the gates.

Initialization and configuration

The Init method initializes the mapper for the given platform but independently of a particular kernel and circuit.
This includes sanity checking and initializing the mapper’s representation of the platform’s topology from the plat-
form’s configuration file; see Configuration file definitions for mapper control for the description of the platform’s
topology.

The topology’s edges define the neighborhood/connection map of the real qubits. Floyd-Warshall is used to compute
a distance matrix that contains for each real qubit pair the shortest distance between them. This makes the mapper
applicable to arbitrary formed connection graphs but at the same time less scalable in number of qubits. For NISQ
systems this is no problem. For larger and more regular connection grids, the implementation contains a provision to
replace this by a distance function.

Subsequently, Map is called for each kernel/circuit in the program. It will attempt initial placement and then heuristic
routing and mapping. Before anything else, for each kernel again, the v2r and rs are initialized, each under control
of an option:
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• mapinitone2one: Definition of the initialization of the v2r map at the start of the mapping of each kernel;
this v2r will apply at the start of initial placement.

– no: there is no initial mapping of virtual to real qubits; each virtual qubit is allocated to the first free real
qubit on the fly, when it is mapped

– yes (default for back-ward compatibility): the initial mapping is 1 to 1: a virtual qubit with index qi is
mapped to its real qi counterpart (so: same index)

• mapassumezeroinitstate: Definition of the initialization of the rs map at the start of the mapping of
each kernel; this rs will apply at the start of initial placement. Values can be: rs_nostate (no useful state),
rs_wasinited (zero state), and rs_hasstate (useful but unknown state).

– no (default for back-ward compatibility): each real qubit is assumed not to contain any useful state nor is
it known that it is in a particular base state; this corresponds to the state with value rs_nostate.

– yes (best): each real qubit is assumed to be in a zero state (e.g. |0>) that allows a swap with it to be
replaced by a (cheaper) move; this corresponds to the state with value rs_wasinited.

Initial Placement

After initialization and configuration, initial placement is started. See the start of Mapping of a description of initial
placement. Since initial placement may take a lot of computer time, provisions have been implemented to time it out;
this comes in use during benchmark runs. Initial placement is run under the control of two options:

• initialplace: Definition of initial placement operation. Initial placement, when run, may be 100% suc-
cessful (all two-qubit gates were made NN); be moderately successful (not all two-qubit gates were made NN,
only some) or fail to find a solution:

– no (default): no initial placement is attempted

– yes (best, optimal result): do initial placement starting from the initial v2r mapping; since initial place-
ment employs an Integer Linear Programming model as the base of implementation, finding an initial
placement may take quite a while.

– 1s, 10s, 1m, 10m, 1h (best, limit time, still a result): put a soft time limit on the execution time
of initial placement; do initial placement as with yes but limit execution time to the indicated maximum
(one second, 10 seconds, one minute, etc.); when it is not successfull in this time, it fails, and subsequently
heuristic routing and mapping is started, which cannot fail.

– 1sx, 10sx, 1mx, 10mx, 1hx: put a hard time limit on the execution time of initial placement; do
initial placement as with yes but limit execution time to the indicated maximum (one second, 10 seconds,
one minute, etc.); when it is not successfull in this time, it fails, and subsequently the compiler fails as
well.

• initialplace2qhorizon: The initial placement algorithm considers only a specified number of two-qubit
gates from the start of the circuit (a horizon) to determine a mapping. This limits computer time but also may
make a suboptimal result more useful. Option values are:

– 0 (default, optimal result): When 0 is specified as option value, there is no limit; all two-qubit gates of the
circuit are taken into account.

– 10, 20, 30, 40, 50, 60, 70, 80, 90, 100: The initial placement algorithm considers
only this number of initial two-qubit gates in the circuit to determine a mapping.

Best result would be obtained by running initial placement optionally twice (this is not implemented):

• Once with a modified model in which only the result with all two-qubit gates NN is successful. When it succeeds,
mapping has completed. Depending on the resources one wants to spend on this, a soft time limit could be set.

68 Chapter 10. Compiler Passes



OpenQL

• Otherwise, attempt to get a good starting mapping by running initial placement with a soft time limit (of e.g. 1
minute) and with a two-qubit horizon (of e.g. 10 to 20 gates). What ever the result is, run heuristic routing and
mapping afterwards.

This concludes initial placement. The v2r and rs at this time are stored in attributes for retrieval by the caller of the
Map method. See Input and output intermediate representation.

Heuristic Routing and Mapping

Subsequently heuristic routing and mapping starts for the kernel given in the Map method call.

• The scheduler’s dependence graph is used to feed heuristic routing and mapping with gates to map and to look-
ahead: see Dependence Graph and Look-Ahead, Which Gate(s) To Map Next.

• To map a non-NN two-qubit gate, various routing alternatives, to be implemented by swap/move sequences,
are generated: see Generating Routing Alternatives.

• Depending on the metric chosen, the alternatives are evaluated: see Comparing Alternatives, Which Metric To
Use.

• When minimizing circuit latency extension, ILP is maximized by maintaining a scheduled circuit representation:
see Look-Back, Maximize Instruction-Level Parallelism By Scheduling.

• Looking farther ahead beyond the mapping of the current two-qubit gate, the router recurses considering the
effects of its mapping on subsequent two-qubit gates: see Looking Farther Ahead, Recurse To Find Best Alter-
native.

• Finally, the evaluations of the alternatives are compared, the best one selected and the two-qubit gate routed and
mapped: see Deciding For The Best, Committing To The Best.

Dependence Graph and Look-Ahead, Which Gate(s) To Map Next

The mapper optionally uses the dependence graph representation of the circuit to enlarge the number of alternatives it
can consider, and to make use of the criticality of gates in the decision which one to map next. To this end, it calls the
scheduler’s init method, and sets up the availability list of gates as set of gates to choose from which one to map
next: initially it contains just the SOURCE gates. See Scheduling, and below for more information on the availability
list’s properties. The mapper listens to the following scheduler options:

• scheduler_commute: Because the mapper uses the dependence graph that is also generated for the sched-
uler, the alternatives that are made available by commutation of czs/cnots, can be made available to the
mapper:

– no (default for backward-compatibility): don’t allow two-qubit gates to commute (cz/cnot) in the de-
pendence graph; they are kept in original circuit order and presented to the mapper in this order

– yes (best): allow commutation of two-qubit cz/cnot gates; e.g. when one isn’t nearest-neighbor but
one that comes later in the circuit but commutes with the earlier one is NN now, allow the later one to be
mapped before the earlier one

• print_dot_graphs: When it has the value yes, the mapper produces in the output directory in multiple
files each with as name the name of the kernel followed by _mapper.dot a dot representation of the depen-
dence graph of the kernel’s circuit at the start of heuristic routing and mapping, in which the gates are ordered
along a timeline according to their cycle attribute.

With the dependence graph available to the mapper, its availability list is used just as in the scheduler:

• the list at each moment contains those gates that have not been mapped but can be mapped now
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• the availability list forms a kind of cut of the dependence graph: all predecessors of the gates in the list and
recursively all their predecessors have been mapped, all other gates have not been mapped (the cut is really the
set of dependences between the set of mapped and the set of non-mapped gates)

• each moment a gate has been mapped, it is taken out of the availability list; those of its successor dependence
gates of which all predecessors have been mapped, become available for being mapped, i.e. are added to the
availability list

This dependence graph is used to look-ahead, to find which two-qubit to map next, to make a selection from all that
are available or take just the most critical one, to try multiple ones and evaluate each alternative to map it, comparing
those alternatives against one of the metrics (see later), and even go into recursion (see later as well), i.e. looking
farther ahead to see what the effects on subsequent two-qubit gates are when mapping the current one.

In this context the criticality of a gate is an important property of a gate: the criticality of a gate is the length of the
longest dependence path from the gate to the SINK gate and is computed in a single linear backward scan over the
dependence graph (Dijkstra’s algorithm).

Deciding for the next two-qubit gate to map, is done based on the following option:

• maplookahead: How does the mapper exploit the lookahead offered by the dependence graph constructed
from the input circuit?

– no: the mapper ignores the dependence graph and takes the gates to be mapped one by one from the input
circuit

– critical: gates that by definition do not need routing, are mapped first (and kind of flushed): these
include the classical gates, scheduling gates (such as wait), and the single qubit quantum gates; and of
the remaining (only two qubit) quantum gates the most critical gate is selected first to be routed and mapped
next; the rationale of taking the most critical gate is that after that one the most cycles are expected until
the end of the circuit, and so a wrong routing decision of a critical gate is likely to have most effect on the
mapped circuit’s latency; so criticality has higher priority to select the one to be mapped next, than NN
(see noroutingfirst for the opposite approach)

– noroutingfirst (default, best): gates that by definition do not need routing, are mapped first (and
kind of flushed): these include the classical gates, scheduling gates (such as wait), and the single qubit
quantum gates; in this, this noroutingfirst option has the same effect as critical; but those two
qubit quantum gates of which the operands are neighbors in the current mapping are selected to be mapped
first, not needing routing, also when these are not critical; and when none such are left, only then take the
most critical one; so NN has higher priority to select the one to be mapped next, than criticality

– all (promising in combination with recursion): as with noroutingfirst but don’t select the most
critical one, select them all; so at each moment gates that do not need routing, are mapped first (and kind
of flushed); these thus include the NN two-qubit gates; this mapping and flushing stops when only non-NN
two-qubit gates remain; instead of selecting one of these to be routed/mapped next, all of these are selected,
the decision is postponed; i.e. for all remaining (two qubit non-NN) gates generate alternatives and find
the best from these according to the chosen metric (see the mapper option below); and then select that
best one to route/map next

Generating Routing Alternatives

Having selected one (or more) two-qubit gates to map next, for each two-qubit gate the routing alternatives are ex-
plored. Subsequently, those alternatives will be compared using the selected metric and the best one selected; see
further below.

But first the routing alternatives have to be generated. When the mapped operands of a two-qubit gate are not NN,
they must be made NN by swapping/moving one or both over nearest-neighbor connections in the target platform’s
grid topology towards each other. Only then the two-qubit gate can be executed; the mapper will insert those swaps
and moves before the two-qubit gate in the circuit.
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There are usually many routes between the qubits. The current implementation only selects the ones with the shortest
distance, and these can still be many. In a perfectly rectangular grid, the number of routes is similar to a Fibonaci
number depending on the distance decomposed in the x and y directions, and is maximal when the distances in the x
and y directions are equal. All shortest paths between two qubits in such a grid stay within a rectangle in the grid with
the mapped qubit operands at opposite sides of the diagonal.

A shortest distance leads to a minimal number of swaps and moves. For each route between qubits at a distance d,
there are furthermore d possible places in the route where to do the two-qubit gate; the other d-1 places in the route
will be a swap or a move.

The implementation supports an arbitrarily formed connection graph, so not only a rectangular grid. All that matter are
the distances between the qubits. Those have been computed using Floyd-Warshall from the qubit neighbor relations
during initialization of the mapper. The shortests paths are generated in a brute-force way by only navigating to
those neighbor qubits that will not make the total end-to-end distance longer. Unlike other implementations that only
minimize the number of swaps and for which the routing details are irrelevant, this implementation explicitly generates
all alternative paths to allow the more complicated metrics that are supported, to be computed.

The generation of those alternatives is controlled by the following option:

• mappathselect: When generating alternatives of shortest paths between two real qubits:

– all (default, best): select all possible alternatives: those following all possible shortest paths and in each
path each possible placement of the two-qubit gate

– borders: only select those alternatives that correspond to following the borders of the rectangle spanning
between the two extreme real qubits; so on top of the at most two paths along the borders, there still are all
alternatives of the possible placements of the two-qubit gate along each path

It is thus not supported to turn off to generate alternatives for the possible placements of the two-qubit gate along each
path.

The alternatives are ordered; this is relevant for the maptiebreak option below. The alternatives are ordered:

• first by the two-qubit gate for which they are an alternative; the most critical two-qubit gate is first; remember
that there can be more than one two-qubit gate when all was selected for the maplookahead option.

• then by the followed path; each path is represented by a sequence of transitions from the mapped first operand
qubit to the mapped second operand qubit. The paths are ordered such that of any set of paths with a common
prefix these are ordered by a clock-wise order of the successor qubits as seen from the last qubit of the common
prefix.

• and then by the placement of the two-qubit gate; the placements are ordered from start to end of the path.

So, the first alternative will be the one that clock-wise follows the border and has the two-qubit gate placed directly at
the qubit that is the mapped first operand of the gate; the last alternative will be the one that anti-clock-wise follows
the border and has the two-qubit gate placed directly at the qubit that is the mapped last operand of the gate.

Comparing Alternatives, Which Metric To Use

With all alternatives available, it is time to compare them using the defined metric. The metric to use is defined by the
strategy option, called for historic reasons mapper. What needs to be done when multiple alternatives compare
equal, is specified later.

• mapper: The basic mapper strategy (metric of mapper result optimization) that is employed:

– no (default for back-ward compatibility): no mapping is done. The output circuit is identical to the input
circuit.

– base: map the circuit: use as metric just the length of the paths between the mapped operands of each
two-qubit gate, and minimize this length for each two-qubit gate that is mapped; with only alternatives for
one two-qubit gate, all alternatives have the same shortest path, so all alternatives qualify equally; with
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alternatives for multiple two-qubit gates, those two-qubit gates are preferred that lead to the least swaps
and moves.

– minextend (best): map the circuit: use as metric the extension of the circuit by each of the shortest paths
between the mapped operands of each two-qubit gate, and minimize this circuit extension by evaluating
all alternatives; the computation of the extension relies on scheduling-in the required swaps and moves in
the circuit and just subtracting the depths before and after doing that; the various options controlling this
scheduling-in, will be specified later below.

– minextendrc: map the circuit: as in minextend, but taking resource constraints into account when
scheduling-in the swaps and moves.

Look-Back, Maximize Instruction-Level Parallelism By Scheduling

To know the circuit’s latency extension of an alternative, the mapped gates are represented as a scheduled circuit, i.e.
with gates with a defined cycle attribute, and the gates ordered in the circuit with non-decreasing cycle value. In
case the mapper option has the minextendrc value, also the state of all resources is maintained. When a swap or
move gate is added, it is ASAP scheduled (optionally taking the resource constraints into account) into the circuit and
the corresponding cycle value is assigned to the cycle attribute of the added gate. Note that when swap or move is
defined by a composite gate, the decomposed sequence is scheduled-in instead.

The objective of this is to maximize the parallel execution of gates and especially of swaps and moves. Indeed, the
smaller the latency extension of a circuit, the more parallelism was created, i.e. the more the ILP was enlarged. When
swaps and moves are not inserted as primitive gates but the equivalent decomposed sequences are inserted, ILP will
be improved even more.

This scheduling-in is done separately for each alternative: for each alternative, the swaps or moves are added and the
end-result evaluated.

This scheduling-in is controlled by the following options:

• mapusemoves: Use move instead of swap where possible. In the current implementation, a move is imple-
mented as a sequence of two cnots while a swap is implemented as a sequence of three cnots.

– no: don’t

– yes (default, best): do, when swapping with an ancillary qubit which is known to be in the zero state (|0>
for moves with 2 cnots); when not in the initial state, insert a move_init sequence (when defined in
the configuration file, the defined sequence, otherwise a prepz followed by a hadamard) when it doesn’t
additionally extend the circuit; when a move_init sequence would extend the circuit, don’t insert the
move

– 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20: yes, and insert a move_init sequence to get the ancillary qubit in the initial state, if needed; but
only when the number of cycles of circuit extension that this move_init causes, is less-equal than 0, 1,
... 20 cycles.

Please note that the mapassumezeroinitstate option defines whether the implementation of the
mapper can assume that each qubit starts off in the initial state; this increases the likelihood that moves are
inserted, and makes all these considerations of only inserting a move when a move_init can bring the
ancillary qubit in the initial state somehow without additional circuit extension, of no use.

• mapprepinitsstate: Does a prepz initialize the state, i.e. leave the state of a qubit in the |0> state?
When so, this can be reflected in the rs map.

– no (default, playing safe): no, it doesn’t; a prepz during mapping will, as any other quantum gate, set
the state of the operand qubits to rs_hasstate in the rs map

– yes (best): a prepz during mapping will set the state of the operand qubits to rs_wasinited; any
other gate will set the state of the operand qubits to rs_hasstate
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• mapselectswaps: When scheduling-in swaps and moves at the end for the best alternative found, this
option selects that potentially not all required swaps and moves are inserted. When not all are inserted but
only one, the distance of the mapped operand qubits of the two-qubit gate for which the best alternative was
generated, will be one less, and after insertion heuristic routing and mapping starts over generating alternatives
for the new situation.

Please note that during evaluation of the alternatives, all swaps and moves are inserted. So the alternatives are
compared with all swaps and moves inserted but only during the final real insertion after having selected the
best alternative, just one is inserted.

– all (best, default): insert all swaps and moves as usual

– one: insert only one swap or move; take the one swapping/moving the mapped first operand qubit

– earliest: insert only one swap or move; take the one that can be scheduled earliest from the one swap-
ping/moving the mapped first operand qubit and the one swapping/moving the mapped second operand
qubit

• mapreverseswap: Since swap is symmetrical in effect (the states of the qubits are exchanged) but not in
implementation (the gates on the second operand start one cycle earlier and end one cycle later), interchanging
the operands may cause a swap to be scheduled at different cycles. Reverse operand real qubits of swap when
beneficial:

– no: don’t

– yes (best, default): when scheduling a swap, exploiting the knowledge that the execution of a swap for
one of the qubits starts one cycle later, a reversal of the real qubit operands might allow scheduling it one
cycle earlier

Looking Farther Ahead, Recurse To Find Best Alternative

Looking farther ahead beyond the mapping of the current two-qubit gate, the router recurses considering the effects of
its mapping on subsequent two-qubit gates.

After having evaluated the metric for each alternative, multiple alternatives may remain, all with the best value. For
the minextend and minextendrc strategies, there are options to select from these by looking ahead farther, i.e.
beyond the metric evaluation of this alternative for mapping one two-qubit gate. This recursion assumes that the current
alternative is selected, its swaps and moves are added to the circuit the v2r map is updated, and the availability set
is updated. And then in this new situation the implementation recurses by selecting one or more two-qubit gates to
map next, generating alternatives, evaluating these alternatives against the metric, and deciding which alternatives are
the best. This recursion can go deeper and deeper until a particular depth has been reached. Then of the resulting
tree of alternatives, for all the leaves representing the deepest alternatives, the metric is computed from the root to the
leaf and compared to each other. In this way suboptimalities of individual choices can be balanced to a more optimal
combination. From these leaves, the best is taken; when multiple alternatives compare equally well from root to leaf,
the maptiebreak option decides which one to take, as usual; see below there.

The following options control this recursion:

• mapselectmaxlevel: Looking farther ahead beyond the mapping of the current two-qubit gate, the router
recurses considering the effects of its mapping on subsequent two-qubit gates. The level specifies the recursion
depth: how many two-qubits in a row are considered beyond the current one. This generates a tree of alternatives.

– 0 (default, back-ward compatible): no recursion is done

– 1, 2, 3, 4, 5, 6, 7, 8, 9, 10: the indicated number of recursions is done; initial experi-
ments show that a value of 3 produces reasonable results, and that recursion depth of 5 and higher are
infeasible because of resource demand explosion

– inf: there is no limit to the number of recursions; this makes the resource demand of heuristic routing
and mapping explode
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• mapselectmaxwidth: Not all alternatives are equally promising, so only some best are selected to recurse
on. The width specifies the recursion width: for how many alternatives the recursion is actually done. The
specification of the width is done relative to the number of alternatives that came out as best at the current
recursion level.

– min (default): only recurse on those alternatives that came out as best at this point

– minplusone: only recurse on those alternatives that came out as best at this point, plus one second-best

– minplushalfmin (best combination of optimality and resources: only recurse on those alternatives that
came out as best at this point, plus some number of second-bests: half the number more than the number
of best ones

– minplusmin: only recurse on those alternatives that came out as best at this point, plus some number of
second-bests: twice the number of best ones

– all: don’t put a limit on the recursion width

• maprecNN2q: In maplookahead with value all, as with noroutingfirst, two-qubit gates which are
already NN, are immediately mapped, kind of flushing them. However, in recursion this creates an imbalance:
at each level optionally several more than just one two-qubit gate are mapped and this makes the results of the
alternatives largely incomparable. Comparision would be easier to understand when at each level only one two-
qubit gate would be mapped. This option specifies independently of the maplookahead option that is chosen
and that is applied before going into recursion, whether in the recursion this immediate mapping/flushing of NN
two-qubit gates is done.

– no (default, best): no, NN two-qubit gates are not immediately mapped and flushed until only non-NN
two-qubit gates remain; at each recursion level exactly one two-qubit gate is mapped

– yes: yes, NN two-qubit gates are immediately mapped and flushed until only non-NN two-qubit gates
remain; this makes recursion more greedy but makes interpreting the evaluations of the alternatives harder

Deciding For The Best, Committing To The Best

With or without recursion, for the base strategy as well as for the minextend and minextendrc strategies, when
at the end multiple alternatives still compare equally well, a decision has to be taken which two-qubit gate to route and
map. This selection is made based on the value of the following option:

• maptiebreak: When multiple alternatives remain for a particular strategy with the same best evaluation
value, decide how to select the best single one:

– first: select the first of the set

– last: select the last of the set

– random (default, best, non-deterministic): select in a random way from the set; when testing and compar-
ing mapping strategies, this option introduces non-determinism and non-reproducibility, which precludes
reasoning about the strategies unless many samples are taken and statistically analyzed

– critical (deterministic, second best): select the first of the alternatives generated for the most critical
two-qubit gate (when there were more)

Having selected a single best alternative, the decision has been made to route and map its corresponding two-qubit gate.
This means, scheduling in the result circuit the swaps and moves that route the mapped operand qubits, updating the
v2r and rs maps on the fly; see Look-Back, Maximize Instruction-Level Parallelism By Scheduling for the details of
this scheduling. And then map the two-qubit gate; see Input and output intermediate representation for what mapping
involves.

After this, in the dependence graph a next gate is looked for to map next and heuristic routing and mapping starts over
again.
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10.5.4 Configuration file definitions for mapper control

The configuration file contains the following sections that are recognized by the mapper:

• hardware_settings the number of real qubits in the platform, and the cycle time in nanoseconds to convert
instruction duration into cycles used by the various scheduling actions are taken from here

• instructions the mapper assumes that the OpenQL circuit was read in and that gates were created accord-
ing to the specifications of these in the configuration file: the name of each encountered gate is looked up in
this section and, if not found, in the gate_decomposition section; if found, that gate (or those gates)
are created; the duration field specifies the duration of each gate in nanoseconds; the type and various
cc_light fields of each instruction are used as parameters to select applicable resource constraints in
the resource-constrained scheduler

• gate_decomposition when creating a gate matching an entry in this section, the set of gates specified
by the decomposition description of the entry is created instead; the mapper exploits the decomposition
support that the configuration file offers by this section in the following way:

– reading the circuit When a gate specified as a composite gate is created in an OpenQL program,
its decomposition is created instead. So a cnot in the OpenQL program that is specified in the
gate_decomposition section as e.g. two hadamards with a cz in the middle, is input by the
mapper as this latter sequence.

– swap support A swap is a composite gate, usually consisting of 3 cnots; those cnots usually are
decomposed to a sequence of primitive gates itself. The mapper supports generating swap as a prim-
itive; or generating its shallow decomposition (e.g. to cnots); or generating its full decomposition
(e.g. to the primitive gate set). The former leads to a more readable intermediate qasm file; the latter
to more precise evaluation of the mapper selection criteria. Relying on the configuration file, when
generating a swap, the mapper first attempts to create a gate with the name swap_real, and when
that fails, create a gate with the name swap. The same machinery is used to create a move.

– making gates real Each gate input to the mapper is a virtual gate, defined to operate on virtual qubits.
After mapping, the output gates are real gates, operating on real qubits. Making gates real is the
translation from the former to the latter. This is usually done by replacing the virtual qubits by their
corresponding real qubits. But support is provided to also replace the gate itself: when a gate is made
real, the mapper first tries to create a gate with the same name but with _real appended to its name
(and using the mapped, real qubits); if that fails, it keeps the original gate and uses that (with the
mapped, real qubits) in the result circuit.

– ancilliary initialization For a move to be done instead of a swap, the target qubit must be in a par-
ticular state. For CC-Light this is the |+> state. To support other target platforms, the move_init
gate is defined to prepare a qubit in that state for the particular target platform. It decomposes to a
prepz followed by a Hadamard for CC-Light.

– making all gates primitive After mapping, the output gates will still have to undergo a final schedule
with resource constraints before code can be generated for them. Best results are obtained when then
all gates are primitive. The mapper supports a decomposition step to make that possible and this is
typically used to decompose leftover swaps and moves to primitives: when a gate is made primitive,
the mapper first tries to create a gate with the same name but with _prim appended to its name; if
that fails, it keeps the original gate and uses that in the result circuit that is input to the scheduler.

• topology A qubit grid’s topology is defined by the neighbor relation among its qubits. Each qubit has an
id (its index, used as a gate operand and in the resources descriptions) in the range of 0 to the number of
qubits in the platform minus 1. Qubits are connected by directed pairs, called edges. Each edge has an id (its
index, also used in the resources descriptions) in some contiguous range starting from 0, a source qubit and a
destination qubit. Two grid forms are supported: the xy form and the irregular form. In grids of the xy
form, there must be two additional attributes: x_size and y_size, and the qubits have in addition an X and
a Y coordinate: these coordinates in the X (Y) direction are in the range of 0 to x_size-1 (y_size-1).
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• resources See the scheduler’s documentation.
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CHAPTER 11

Change Log

All notable changes to this project will be documented in this file. This project adheres to Semantic Versioning.

11.1 [ next ] - [ TBD ]

11.1.1 Added

• interface (C++ and Python) to compile cQASM 1.0

11.1.2 Changed

• CC backend:

– renamed JSON field “signal_ref” to “ref_signal”

– renamed JSON field “ref_signals_type” to “signal_type”

– added option for new seq_bar semantics (cc firmware from 20191219 onwards)

– improved reporting on JSON semantic errors

– implemented option to output scheduled QASM files

11.1.3 Removed

11.1.4 Fixed

• changed register used for FOR loop, so it doesn’t clash with delay setting

• fixed documentation for python setup and running tests

77

http://semver.org/


OpenQL

11.2 [ 0.8.0 ] - [ 2019-10-31 ]

11.2.1 Added

• support for CC backend

11.2.2 Changed

11.2.3 Removed

11.2.4 Fixed

• fixed issue with duplicate kernel names

• updated json library to fix osx builds

11.3 [ 0.7.1 ] - [ 2019-09-02 ]

11.3.1 Added

11.3.2 Changed

• re-factored folders

11.3.3 Removed

11.3.4 Fixed

• fixed issue with correct python library picking on tud win systems

11.4 [ 0.7.0 ] - [ 2019-06-03 ]

11.4.1 Added

• support for single qubit flux options (auto/manual modes)

• option to control generation of qasm files and dot graphs

• NPROCS=n variable can now be set for faster compilation to use n threads

• conda build recipe

• conda binary releases for Linux, Windows platform (not yet available for OSX due to a conda distribution issue)
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11.4.2 Changed

• openql is now public

• improved resource-constrained scheduling

• sweep point array is now optional

• support for barrier/wait on all qubits

11.4.3 Removed

• set_sweep_points(sweep_points list, num of sweep points)

11.4.4 Fixed

• resource-constrained qasm is generated by same scheduler for cc-light as is used to generate qisa

• Illegal parameter in gate_decomposition

11.5 [ 0.6 ] - [ 2018-10-29 ]

11.5.1 Added

• generated qasm code conforms to cQASM v1.0 specification

• added libqasm to pytest to test conformance of generated qasm

11.5.2 Changed

• ALAP scheduler is the default option (Issue #193)

• compiling an empty program raises error (Issue #164)

11.5.3 Removed

11.5.4 Fixed

• tests are added to test option setting/getting (Issue #190)

11.6 [ 0.5.5 ] - [ 2018-10-25 ]

11.6.1 Added

11.6.2 Changed

• simplified interface of Program.set_sweep_points (Issue #184)
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11.6.3 Removed

11.6.4 Fixed

• instruction ordering to generate consistent qisa (Issue #190)

• stateful behaviour in OpenQL (Issue #171)

11.7 [ 0.5.4 ] - [ 2018-10-17 ]

11.7.1 Added

11.7.2 Changed

11.7.3 Removed

11.7.4 Fixed

• qubit ordering in SMIS and SMIT instructions

11.8 [ 0.5.3 ] - [ 2018-10-11 ]

11.8.1 Added

• added detuning constraints for cclight

11.8.2 Changed

11.8.3 Removed

11.8.4 Fixed

• alap scheduling for cclight

11.9 [ 0.5.2 ] - [ 2018-10-10 ]

11.9.1 Added

11.9.2 Changed

11.9.3 Removed

11.9.4 Fixed

• wrong target qubits in the configuration files
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• Jenkins test build profile to test against assembler

11.10 [ 0.5.1 ] - [ 2018-09-12 ]

11.10.1 Added

• API to obtain version number

11.10.2 Changed

11.10.3 Removed

11.10.4 Fixed

• qisa format (removed comma)

11.11 [ 0.5 ] - [ 2018-06-26 ]

11.11.1 Added

• support for classical instructions

• support for flow control (selection and repetition)

• classical register manager implementation

11.11.2 Changed

• measure instruction updated to support classical target register

• kernels are not any more fused to generate a single qisa program

11.11.3 Removed

• kernel does not recieve iteration count, deprecated in favor of for-loop

11.11.4 Fixed

• qisa format (pre-interval syntax updated)

11.12 [ 0.4.1 ] - [ 2018-05-31 ]

11.12.1 Added

•
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11.12.2 Changed

•

11.12.3 Removed

•

11.12.4 Fixed

• getting started example

11.13 [ 0.4 ] - [ 2018-05-19 ]

11.13.1 Added

• kernel conjugation/un-compute feature

• multi-qubit control decomposition

• toffoli decomposition

• QASM loader for QASM v1.0 syntax check

• initial support for Quantumsim backend

• vebosity levels

11.13.2 Changed

• program options can be set/get with simple api calls

• when adding gates, qubits should always be specified as list

• updated qisa-as support for tests

11.13.3 Removed

• qisa-as is not a part of openql

• prog.compile() does not get optimiz/schedule/verbose options

11.13.4 Fixed

• static iteration count for scheduled qasm

• roation angle printing
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11.14 [ 0.3 ] - [ 2017-10-24 ]

11.14.1 Added

• CCLight eQASM compiler

• unittests using qisa-as

• simplified gate decompositions

• wait/barrier instructions

11.14.2 Changed

•

11.14.3 Removed

•

11.14.4 Fixed

• varying prepz duration

• M_PI issue in windows install

11.15 [ 0.2 ] - [ 2017-08-18 ]

11.15.1 Added

• CBox eQASM compiler

• Python and C++ interface

• Configuration file specifiction

• trace support for qumis code

• cmake based builds

11.15.2 Changed

•

11.15.3 Removed

•

11.15.4 Fixed
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Contributors

OpenQL framework has been created initially by Nader Khammassi.

Note: please fill your contributions in this file

• Nader Khammassi

– CBox Backend

– Configuration file support

– QASM loader for QASM syntax check

– C++ exceptions

– QISA map file generation

– QISA Control store generation

• Imran Ashraf

– support for hybrid classical/quantum compilation

– support for control flow (selection and repetition)

– kernel un-compute/conjugation feature

– multi-qubit control decomposition

– toffoli decompositions

– openql intermediate representation

– quantumsim simulator Backend

– compilation for CC-Light architecture .. code-block:: guess

* resource-constrained scheduling

* parallel (SIMD and VLIW) QISA code generation

– flexible platform constraints specification and its implementation

– support for multi-qubit gates
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– scheduling (ASAP/ALAP) algorithms

– parametrized gate decomposition

– unit-tests

– python Package for OpenQL

– cmake-based Compilation for cross-platform build setup

– conda recipies and packages

– single qubit flux operations

– cQASM v1.0 support

– OpenQL documentation

• Adriaan Rol

– Contributed to the Hardware Configuration Specification

– Utilizing qisa-as in unit-tests

– Testing OpenQL on the Hardware

• Xiang Fu

– Contributed to the Hardware Configuration Specification

– Testing OpenQL on the Hardware

• Wouter Vlothuizen

– backend for Central Controller (CC)

– new simplified qubit numbering scheme (rotated surface code fabric by 45 deg)

– support for comments in JSON file

– show line number and position on JSON syntax errors

– cleanup

• Hans van Someren

– uniform scheduling algorithm

– resource constraint framework design

– resource constraint description for CC-Light architecture

– resource constrained list scheduling algorithms

– backward resource constraint checking

– forward and backward list scheduling algorithms

– gate commutation while scheduling

– clifford gate sequence optimization

– out of order gate creation

– staged decomposition description

– generalized passes, dumping and reporting

– platform topology specification and its implementation

– single qubit flux operations design
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– initial placement mapping implementation

– basic routing implementation

– latency sensitive routing

– resource constrained routing

– scheduler integration into routing

– use moves next to swaps while routing

– crossbar spin-qubit scheduling and resource management

– recursive look-back and look-ahead routing

– arbitrary topology routing

– OpenQL documentation

• Fer Grooteman

– added interface (C++ and Python) to compile cQASM 1.0

• Anneriet Krol

– unitary decomposition support

• Razvan Nane

– compiler API and modularity support

• Jeroen van Straten

– tutorial on DQCsim + OpenQL interoperation

– doxygen documentation
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CHAPTER 13

openql

OpenQL is a C++/Python framework for high-level quantum programming. The framework provides a compiler for
compiling and optimizing quantum code. The compiler produces the intermediate quantum assembly language in
cQASM (Common QASM) and the compiled eQASM (executable QASM) for various target platforms. While the
eQASM is platform-specific, the quantum assembly code (QASM) is hardware-agnostic and can be simulated on the
QX simulator.

Functions

get_option(option_name) Returns value of any of the following OpenQL options:
get_version() Returns OpenQL version
print_options() Prints a list of available OpenQL options with their val-

ues.
set_option(option_name, option_value) Sets any of the following OpenQL options:

Classes

CReg() Classical register class.
Kernel(*args) Kernel class which contains various quantum instruc-

tions.
Operation(*args) Operation class representing classical operations.
Platform(*args) Platform class specifying the target platform to be used

for compilation.
Program(*args) Program class which contains one or more kernels.
Compiler(name) Compiler class which contains one or more compiler

passes.

class openql.openql.CReg
Classical register class.

class openql.openql.Compiler(name)
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Compiler class which contains one or more compiler passes.

add_pass(realPassName)

Adds a compiler pass under its real name

Parameters arg1 (str) – name of the real pass to be added.

add_pass_alias(realPassName, symbolicPassName)

Adds a compiler pass under an alias name

Parameters

• arg1 (str) – name of the real pass to be added.

• arg2 (str) – alias name of the pass to be added.

compile(program)

Compiles the program

Parameters arg1 (Program) – program object to be compiled.

set_pass_option(passName, optionName, optionValue)

Sets a compiler pass option

Parameters

• arg1 (str) – name (real or alias) of the compiler pass to be added.

• arg2 (str) – option name of the option to be configured.

• arg3 (str) – value of the option.

class openql.openql.Kernel(*args)
Kernel class which contains various quantum instructions.

barrier(*args)

inserts explicit barrier on specified qubits.

wait with duration ‘0’ is also equivalent to applying barrier on specified list of qubits. If
no qubits are specified, then barrier is applied on all the qubits.

Parameters arg1 ([]) – list of qubits

classical(*args)

adds classical operation kernel.

Parameters

• arg1 (CReg) – destination register for classical operation.

• arg2 (Operation) – classical operation.

clifford(id, q0)

Applies clifford operation of the specified id on the qubit.
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The ids and the corresponding operations are:

id Operations
0 [‘I’]
1 [‘Y90’, ‘X90’]
2 [‘mX90’, ‘mY90’]
3 [‘X180’]
4 [‘mY90’, ‘mX90’]
5 [‘X90’, ‘mY90’]
6 [‘Y180’]
7 [‘mY90’, ‘X90’]
8 [‘X90’, ‘Y90’]
9 [‘X180’, ‘Y180’]
10 [‘Y90’, ‘mX90’]
11 [‘mX90’, ‘Y90’]
12 [‘Y90’, ‘X180’]
13 [‘mX90’]
14 [‘X90’, ‘mY90’, ‘mX90’]
15 [‘mY90’]
16 [‘X90’]
17 [‘X90’, ‘Y90’, ‘X90’]
18 [‘mY90’, ‘X180’]
19 [‘X90’, ‘Y180’]
20 [‘X90’, ‘mY90’, ‘X90’]
21 [‘Y90’]
22 [‘mX90’, ‘Y180’]
23 [‘X90’, ‘Y90’, ‘mX90’]

Parameters

• arg1 (int) – clifford operation id

• arg2 (int) – target qubit

cnot(q0, q1)

Applies controlled-not operation.

Parameters

• arg1 (int) – control qubit

• arg2 (int) – target qubit

conjugate(k)

generates conjugate version of the kernel from the input kernel.

Parameters arg1 (ql::Kernel) – input kernel. Except measure, Kernel to be conjugated.

Returns

Return type None

controlled(k, control_qubits, ancilla_qubits)

generates controlled version of the kernel from the input kernel.

Parameters
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• arg1 (ql::Kernel) – input kernel. Except measure, Kernel to be controlled may con-
tain any of the default gates as well custom gates which are not specialized for a specific
qubits.

• arg2 ([]) – list of control qubits.

• arg3 ([]) – list of ancilla qubits. Number of ancilla qubits should be equal to number of
control qubits.

Returns

Return type None

cphase(q0, q1)

Applies controlled-phase operation.

Parameters

• arg1 (int) – control qubit

• arg2 (int) – target qubit

display()

inserts QX display instruction (so QX specific).

Parameters None –

Returns

Return type None

gate(*args)

adds unitary to kernel.

Parameters

• arg1 (Unitary) – unitary matrix

• arg2 ([]) – list of qubits

get_custom_instructions()

Returns list of available custom instructions.

Parameters None –

Returns List of available custom instructions

Return type []

hadamard(q0)

Applies hadamard on the qubit specified in argument.

Parameters arg1 (int) – target qubit

identity(q0)

Applies identity on the qubit specified in argument.

Parameters arg1 (int) – target qubit

measure(q0)
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measures input qubit.

Parameters arg1 (int) – input qubit

mrx90(q0)

Applies mrx90 on the qubit specified in argument.

Parameters arg1 (int) – target qubit

rx180(q0)

Applies rx180 on the qubit specified in argument.

Parameters arg1 (int) – target qubit

rx90(q0)

Applies rx90 on the qubit specified in argument.

Parameters arg1 (int) – target qubit

ry180(q0)

Applies ry180 on the qubit specified in argument.

Parameters arg1 (int) – target qubit

s(q0)

Applies x on the qubit specified in argument.

Parameters arg1 (int) – target qubit

sdag(q0)

Applies sdag on the qubit specified in argument.

Parameters arg1 (int) – target qubit

toffoli(q0, q1, q2)

Applies controlled-controlled-not operation.

Parameters

• arg1 (int) – control qubit

• arg2 (int) – control qubit

• arg3 (int) – target qubit

wait(qubits, duration)

inserts explicit wait of specified duration on specified qubits.

wait with duration ‘0’ is equivalent to barrier on specified list of qubits. If no qubits are
specified, then wait/barrier is applied on all the qubits.

Parameters

• arg1 ([]) – list of qubits

• arg2 (int) – duration in ns
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y(q0)

Applies y on the qubit specified in argument.

Parameters arg1 (int) – target qubit

z(q0)

Applies z on the qubit specified in argument.

Parameters arg1 (int) – target qubit

class openql.openql.Operation(*args)
Operation class representing classical operations.

class openql.openql.Platform(*args)
Platform class specifying the target platform to be used for compilation.

get_qubit_number()

returns number of qubits in the platform.

Parameters None –

Returns number of qubits

Return type int

class openql.openql.Program(*args)
Program class which contains one or more kernels.

add_do_while(*args)

Adds specified sub-program to a program which will be repeatedly executed while specified
condition is true.

Parameters

• arg1 (Program) – program to be executed repeatedly

• arg2 (Operation) – classical relational operation (<, >, <=, >=, ==, !=)

add_for(*args)

Adds specified sub-program to a program which will be executed for specified iterations.

Parameters

• arg1 (Program) – sub-program to be executed repeatedly

• arg2 (int) – iteration count

add_if(*args)

Adds specified sub-program to a program which will be executed if specified condition is true.
This allows nesting of operations.

Parameters

• arg1 (Program) – program to be executed

• arg2 (Operation) – classical relational operation (<, >, <=, >=, ==, !=)

add_if_else(*args)
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Adds specified sub-programs to a program. First sub-program will be executed if specified con-
dition is true. Second sub-program will be executed if specified condition is false.

Parameters

• arg1 (Program) – program to be executed when specified condition is true (if part).

• arg2 (Program) – program to be executed when specified condition is false (else part).

• arg3 (Operation) – classical relational operation (<, >, <=, >=, ==, !=)

add_kernel(k)

Adds specified kernel to program.

Parameters arg1 (kernel) – kernel to be added

compile()

Compiles the program

Parameters None –

get_sweep_points()

Returns sweep points for an experiment.

Parameters None –

Returns list of sweep points

Return type []

microcode()

Returns program microcode

Parameters None –

Returns microcode

Return type str

set_sweep_points(sweep_points)

Sets sweep points for an experiment.

Parameters arg1 ([]) – list of sweep points

class openql.openql.Unitary(name, matrix)
Unitary class to hold the matrix and its decomposition

decompose()

Decomposes the unitary matrix

Parameters None –

Returns

Return type None

class openql.openql.cQasmReader(q_platform, q_program)
cQasmReader class specifies an interface to add cqasm programs to a program.

file2circuit(cqasm_file_path)
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Adds a cqasm program read from a file.

Parameters arg1 (str) – File path to the file specifying the cqasm that is added to the pro-
gram.

string2circuit(cqasm_str)

Adds a cqasm program defined in a string.

Parameters arg1 (str) – The cqasm that is added to the program.

openql.openql.get_option(option_name)

Returns value of any of the following OpenQL options:

Opt. Name Defaults Possible values
log_level LOG_NOTHING LOG_{NOTHING/CRITICAL/ERROR/WARNING/INFO/DEBUG}
output_dir test_output <output directory>
optimize no yes/no
use_default_gates yes yes/no
decompose_toffoli no yes/no
scheduler ASAP ASAP/ALAP
scheduler_uniform no yes/no
sched-
uler_commute

no yes/no

scheduler_post179 yes yes/no
cz_mode manual auto/manual

Parameters arg1 (str) – Option name

Returns Option value

Return type str

openql.openql.get_version()

Returns OpenQL version

Parameters None –

Returns version number as a string

Return type str

openql.openql.print_options()
Prints a list of available OpenQL options with their values.

openql.openql.set_option(option_name, option_value)

Sets any of the following OpenQL options:
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Opt. Name Defaults Possible values
log_level LOG_NOTHING LOG_{NOTHING/CRITICAL/ERROR/WARNING/INFO/DEBUG}
output_dir test_output <output directory>
optimize no yes/no
use_default_gates yes yes/no
decompose_toffoli no yes/no
scheduler ASAP ASAP/ALAP
scheduler_uniform no yes/no
sched-
uler_commute

no yes/no

scheduler_post179 yes yes/no
cz_mode manual auto/manual

Parameters

• arg1 (str) – Option name

• arg2 (str) – Option value
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Kernel

class openql.openql.Kernel(*args)
Kernel class which contains various quantum instructions.

__init__(*args)

Constructs a Kernel object.

Parameters

• arg1 (str) – name of the Kernel

• arg2 (Platform) – target platform for which the kernel will be compiled

• arg3 (int) – qubit count

• arg4 (int) – classical register count

Methods

__init__(*args) Constructs a Kernel object.
barrier(*args) inserts explicit barrier on specified qubits.
classical(*args) adds classical operation kernel.
clifford(id, q0) Applies clifford operation of the specified id on the

qubit.
cnot(q0, q1) Applies controlled-not operation.
conjugate(k) generates conjugate version of the kernel from the

input kernel.
controlled(k, control_qubits, ancilla_qubits) generates controlled version of the kernel from the

input kernel.
cphase(q0, q1) Applies controlled-phase operation.
cz(q0, q1)
display() inserts QX display instruction (so QX specific).

Continued on next page
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Table 14.1 – continued from previous page
gate(*args) adds unitary to kernel.
get_custom_instructions() Returns list of available custom instructions.
hadamard(q0) Applies hadamard on the qubit specified in argu-

ment.
identity(q0) Applies identity on the qubit specified in argument.
measure(q0) measures input qubit.
mrx90(q0) Applies mrx90 on the qubit specified in argument.
mry90(q0)
prepz(q0)
rx(q0, angle)
rx180(q0) Applies rx180 on the qubit specified in argument.
rx90(q0) Applies rx90 on the qubit specified in argument.
ry(q0, angle)
ry180(q0) Applies ry180 on the qubit specified in argument.
ry90(q0)
rz(q0, angle)
s(q0) Applies x on the qubit specified in argument.
sdag(q0) Applies sdag on the qubit specified in argument.
t(q0)
tdag(q0)
toffoli(q0, q1, q2) Applies controlled-controlled-not operation.
wait(qubits, duration) inserts explicit wait of specified duration on specified

qubits.
x(q0)
y(q0) Applies y on the qubit specified in argument.
z(q0) Applies z on the qubit specified in argument.

Attributes

creg_count
kernel
name
platform
qubit_count

barrier(*args)

inserts explicit barrier on specified qubits.

wait with duration ‘0’ is also equivalent to applying barrier on specified list of qubits. If
no qubits are specified, then barrier is applied on all the qubits.

Parameters arg1 ([]) – list of qubits

classical(*args)

adds classical operation kernel.

Parameters

• arg1 (CReg) – destination register for classical operation.

• arg2 (Operation) – classical operation.
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clifford(id, q0)

Applies clifford operation of the specified id on the qubit.

The ids and the corresponding operations are:

id Operations
0 [‘I’]
1 [‘Y90’, ‘X90’]
2 [‘mX90’, ‘mY90’]
3 [‘X180’]
4 [‘mY90’, ‘mX90’]
5 [‘X90’, ‘mY90’]
6 [‘Y180’]
7 [‘mY90’, ‘X90’]
8 [‘X90’, ‘Y90’]
9 [‘X180’, ‘Y180’]
10 [‘Y90’, ‘mX90’]
11 [‘mX90’, ‘Y90’]
12 [‘Y90’, ‘X180’]
13 [‘mX90’]
14 [‘X90’, ‘mY90’, ‘mX90’]
15 [‘mY90’]
16 [‘X90’]
17 [‘X90’, ‘Y90’, ‘X90’]
18 [‘mY90’, ‘X180’]
19 [‘X90’, ‘Y180’]
20 [‘X90’, ‘mY90’, ‘X90’]
21 [‘Y90’]
22 [‘mX90’, ‘Y180’]
23 [‘X90’, ‘Y90’, ‘mX90’]

Parameters

• arg1 (int) – clifford operation id

• arg2 (int) – target qubit

cnot(q0, q1)

Applies controlled-not operation.

Parameters

• arg1 (int) – control qubit

• arg2 (int) – target qubit

conjugate(k)

generates conjugate version of the kernel from the input kernel.

Parameters arg1 (ql::Kernel) – input kernel. Except measure, Kernel to be conjugated.

Returns

Return type None
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controlled(k, control_qubits, ancilla_qubits)

generates controlled version of the kernel from the input kernel.

Parameters

• arg1 (ql::Kernel) – input kernel. Except measure, Kernel to be controlled may con-
tain any of the default gates as well custom gates which are not specialized for a specific
qubits.

• arg2 ([]) – list of control qubits.

• arg3 ([]) – list of ancilla qubits. Number of ancilla qubits should be equal to number of
control qubits.

Returns

Return type None

cphase(q0, q1)

Applies controlled-phase operation.

Parameters

• arg1 (int) – control qubit

• arg2 (int) – target qubit

display()

inserts QX display instruction (so QX specific).

Parameters None –

Returns

Return type None

gate(*args)

adds unitary to kernel.

Parameters

• arg1 (Unitary) – unitary matrix

• arg2 ([]) – list of qubits

get_custom_instructions()

Returns list of available custom instructions.

Parameters None –

Returns List of available custom instructions

Return type []

hadamard(q0)

Applies hadamard on the qubit specified in argument.
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Parameters arg1 (int) – target qubit

identity(q0)

Applies identity on the qubit specified in argument.

Parameters arg1 (int) – target qubit

measure(q0)

measures input qubit.

Parameters arg1 (int) – input qubit

mrx90(q0)

Applies mrx90 on the qubit specified in argument.

Parameters arg1 (int) – target qubit

rx180(q0)

Applies rx180 on the qubit specified in argument.

Parameters arg1 (int) – target qubit

rx90(q0)

Applies rx90 on the qubit specified in argument.

Parameters arg1 (int) – target qubit

ry180(q0)

Applies ry180 on the qubit specified in argument.

Parameters arg1 (int) – target qubit

s(q0)

Applies x on the qubit specified in argument.

Parameters arg1 (int) – target qubit

sdag(q0)

Applies sdag on the qubit specified in argument.

Parameters arg1 (int) – target qubit

toffoli(q0, q1, q2)

Applies controlled-controlled-not operation.

Parameters

• arg1 (int) – control qubit

• arg2 (int) – control qubit
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• arg3 (int) – target qubit

wait(qubits, duration)

inserts explicit wait of specified duration on specified qubits.

wait with duration ‘0’ is equivalent to barrier on specified list of qubits. If no qubits are
specified, then wait/barrier is applied on all the qubits.

Parameters

• arg1 ([]) – list of qubits

• arg2 (int) – duration in ns

y(q0)

Applies y on the qubit specified in argument.

Parameters arg1 (int) – target qubit

z(q0)

Applies z on the qubit specified in argument.

Parameters arg1 (int) – target qubit
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Program

class openql.openql.Program(*args)
Program class which contains one or more kernels.

__init__(*args)

Constructs a program object.

Parameters

• arg1 (str) – name of the program

• arg2 (Platform) – instance of an OpenQL Platform

• arg3 (int) – number of qubits the program will use

• arg4 (int) – number of classical registers the program will use (default: 0)

Methods

__init__(*args) Constructs a program object.
add_do_while(*args) Adds specified sub-program to a program which will

be repeatedly executed while specified condition is
true.

add_for(*args) Adds specified sub-program to a program which will
be executed for specified iterations.

add_if(*args) Adds specified sub-program to a program which will
be executed if specified condition is true. This allows
nesting of operations.

add_if_else(*args) Adds specified sub-programs to a program. First
sub-program will be executed if specified condition
is true. Second sub-program will be executed if spec-
ified condition is false.

Continued on next page
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Table 15.1 – continued from previous page
add_kernel(k) Adds specified kernel to program.
add_program(p)
compile() Compiles the program
get_sweep_points() Returns sweep points for an experiment.
microcode() Returns program microcode
print_interaction_matrix()
Program.qasm
set_sweep_points(sweep_points) Sets sweep points for an experiment.
write_interaction_matrix()

Attributes

creg_count
name
platform
program
qubit_count

add_do_while(*args)

Adds specified sub-program to a program which will be repeatedly executed while specified
condition is true.

Parameters

• arg1 (Program) – program to be executed repeatedly

• arg2 (Operation) – classical relational operation (<, >, <=, >=, ==, !=)

add_for(*args)

Adds specified sub-program to a program which will be executed for specified iterations.

Parameters

• arg1 (Program) – sub-program to be executed repeatedly

• arg2 (int) – iteration count

add_if(*args)

Adds specified sub-program to a program which will be executed if specified condition is true.
This allows nesting of operations.

Parameters

• arg1 (Program) – program to be executed

• arg2 (Operation) – classical relational operation (<, >, <=, >=, ==, !=)

add_if_else(*args)

Adds specified sub-programs to a program. First sub-program will be executed if specified con-
dition is true. Second sub-program will be executed if specified condition is false.

Parameters
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• arg1 (Program) – program to be executed when specified condition is true (if part).

• arg2 (Program) – program to be executed when specified condition is false (else part).

• arg3 (Operation) – classical relational operation (<, >, <=, >=, ==, !=)

add_kernel(k)

Adds specified kernel to program.

Parameters arg1 (kernel) – kernel to be added

compile()

Compiles the program

Parameters None –

get_sweep_points()

Returns sweep points for an experiment.

Parameters None –

Returns list of sweep points

Return type []

microcode()

Returns program microcode

Parameters None –

Returns microcode

Return type str

set_sweep_points(sweep_points)

Sets sweep points for an experiment.

Parameters arg1 ([]) – list of sweep points
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CHAPTER 16

Compiler

class openql.openql.Compiler(name)
Compiler class which contains one or more compiler passes.

__init__(name)

Constructs a compiler object.

Parameters arg1 (str) – name of the compiler

Methods

__init__(name) Constructs a compiler object.
compile(program) Compiles the program
add_pass(realPassName) Adds a compiler pass under its real name
add_pass_alias(realPassName, symbolicPass-
Name)

Adds a compiler pass under an alias name

set_pass_option(passName, optionName, . . . ) Sets a compiler pass option

Attributes

name

add_pass(realPassName)

Adds a compiler pass under its real name

Parameters arg1 (str) – name of the real pass to be added.

add_pass_alias(realPassName, symbolicPassName)

Adds a compiler pass under an alias name
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Parameters

• arg1 (str) – name of the real pass to be added.

• arg2 (str) – alias name of the pass to be added.

compile(program)

Compiles the program

Parameters arg1 (Program) – program object to be compiled.

set_pass_option(passName, optionName, optionValue)

Sets a compiler pass option

Parameters

• arg1 (str) – name (real or alias) of the compiler pass to be added.

• arg2 (str) – option name of the option to be configured.

• arg3 (str) – value of the option.
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Platform

class openql.openql.Platform(*args)
Platform class specifying the target platform to be used for compilation.

__init__(*args)

Constructs a Platform object.

Parameters

• arg1 (str) – name of the Platform

• arg2 (str) – name of the configuration file specifying the platform

Methods

__init__(*args) Constructs a Platform object.
get_qubit_number() returns number of qubits in the platform.

Attributes

config_file
name
platform

get_qubit_number()

returns number of qubits in the platform.

Parameters None –

Returns number of qubits

Return type int
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CHAPTER 18

Operation

class openql.openql.Operation(*args)
Operation class representing classical operations.

__init__(*args)

Constructs an Operation object (used for initializing with immediate values).

Parameters arg1 (int) – immediate value

Methods

__init__(*args) Constructs an Operation object (used for initializing
with immediate values).

Attributes

operation
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CReg

class openql.openql.CReg
Classical register class.

__init__()

Constructs a classical register which can be source/destination for classical operations.

Parameters None –

Returns classical register object

Return type CReg

Methods

__init__() Constructs a classical register which can be
source/destination for classical operations.

Attributes

creg
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CHAPTER 20

QX Simulation

This tutorial explains how to compile an OpenQL program and execute it on QX. We will use the example of rolling
an 8-faced dice. Rolling this dice results in 1 out of 8 outcomes. The complete code for this example is available in
examples/dice.py

20.1 OpenQL Program

We start by importing openql, qxelerator and some python packages. We also set some options for openql. For this
example we will be using 3 qubits. All this is done by the following code snippet:

from openql import openql as ql
import qxelarator

(continues on next page)
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(continued from previous page)

from functools import reduce
import os
import matplotlib.pyplot as plt

curdir = os.path.dirname(__file__)
output_dir = os.path.join(curdir, 'test_output')

ql.set_option('output_dir', output_dir)
ql.set_option('write_qasm_files', 'yes')
ql.set_option('scheduler', 'ASAP')
ql.set_option('log_level', 'LOG_INFO')

nqubits = 3

Next we create a platform, a program and a kernel. We populate the kernel with 3 hadamard gates being applied on
each qubits. This will put each qubit in superposition. Measuring each qubit will collapse the state resulting in getting
either 0 or 1. This is done by dice_compile() as shown below:

def dice_compile():
print('compiling 8-face dice program by openql')
config = os.path.join(curdir, '../tests/hardware_config_qx.json')

platform = ql.Platform("myPlatform", config)
p = ql.Program('dice', platform, nqubits)
k = ql.Kernel('aKernel', platform, nqubits)

for q in range(nqubits):
k.gate('h', [q])

for q in range(nqubits):
k.gate('measure', [q])

p.add_kernel(k)
p.compile()

Compiling the above code snippet will produce the following quantum assembly code in cQASM v1.0 format:

• test_output/dice.qasm which is the generated un-scheduled qasm code

• test_output/dice_scheduled.qasm which is the generated qasm code after scheduling

For instance, dice.qasm contents are shown below:

version 1.0
# this file has been automatically generated by the OpenQL compiler please do not
→˓modify it manually.
qubits 3

.aKernel
h q[0]
h q[1]
h q[2]
measure q[0]
measure q[1]
measure q[2]

These cQASM codes can be simulated on QX simulator. For this we are using the simplified python interface to QX
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known as QXelarator. This is done by the following code snippet:

def dice_execute_singleshot():
print('executing 8-face dice program on qxelarator')
qx = qxelarator.QX()

# set the qasm to be executed
qx.set('test_output/dice.qasm')

# execute the qasm
qx.execute()

# get the measurement results
res = [int(qx.get_measurement_outcome(q)) for q in range(nqubits)]

# convert the measurement results from 3 qubits to dice face value
dice_face = reduce(lambda x, y: 2*x+y, res, 0) + 1
print('Dice face : {}'.format(dice_face))

Running dice.py will produce output as shown below:

Dice face : 2

where, the Dice face can be any number between 1 and 8.

Next we can also roll the dice 100000 times and plot the frequency of occurance of each face by the following code
snippet:

def dice_execute_multishot():
print('executing 8-face dice program on qxelarator')
qx = qxelarator.QX()
qx.set('test_output/dice.qasm')
dice_faces = []
ntests = 100
for i in range(ntests):

qx.execute()
res = [int(qx.get_measurement_outcome(q)) for q in range(nqubits)]
dice_face = reduce(lambda x, y: 2*x+y, res, 0) +1
dice_faces.append(dice_face)

plot_histogram(dice_faces)

This will produce the histogram similar to the one shown below:
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CHAPTER 21

DQCsim Simulation

This tutorial modifies the QX simulation tutorial to use DQCsim. In short, DQCsim is a framework that allows
simulations to be constructed by chaining plugins operating on a stream of gates and measurement results, thus making
it easier to play around with error models, gather runtime statistics, and connect different quantum simulators to
different algorithm file formats. In this tutorial, we will use it to simulate the toy example modelling an 8-faced die
with QX and QuantumSim’s error models.

Note that DQCsim currently does not work on Windows. If you’re using a Windows workstation, you’ll need to work
in a virtual machine or on a Linux server.

21.1 Dependencies

DQCsim and the plugins we’ll be using can be installed using pip as follows:

python -m pip install dqcsim dqcsim-qx dqcsim-quantumsim dqcsim-cqasm

You’ll probably need to prefix sudo to make that work, and depending on your Linux distribution you may need to
substitute python3. If you don’t have superuser access, you can add the –user flag, but you’ll need to make sure that
DQCsim’s executables are in your system path. The easiest way to do that is figure out the path using python -m
pip uninstall dqcsim, observe the directory that the bin/dqcsim file lives in, and add that to your path using export
PATH=$PATH:. . . , replacing the . . . with the listed path from / to bin.

We’ll also need to add some modules to the Python file from the QX die example:

from dqcsim.host import *
import shutil

21.2 Replicating the QXelarator results

The results we got when using QX directly are pretty easy to replicate. Here’s how:
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def dice_execute_singleshot():
print('executing 8-face dice program on DQCsim using QX')

# DQCsim disambiguates between input file formats based on file extension.
# .qasm is already in use for OpenQASM files, so DQCsim uses .cq for cQASM
shutil.copyfile('test_output/dice.qasm', 'test_output/dice.cq')

# open the simulation context and run the simulation. the cQASM frontend
# returns the results as a JSON object for us to parse througn run()
with Simulator('test_output/dice.cq', 'qx') as sim:

results = sim.run()

# parse the measurement results
res = [results['qubits'][q]['value'] for q in range(nqubits)]

# convert the measurement results from 3 qubits to dice face value
dice_face = reduce(lambda x, y: 2*x+y, res, 0) +1
print('Dice face : {}'.format(dice_face))

The key is the Simulator(‘test_output/dice.cq’, ‘qx’) expression wrapped in the with block, which constructs a DQCsim
simulation using the cq frontend (based on the file extension, that’s why we have to make a copy and rename OpenQL’s
output first) and the qx backend, wrapping the libqasm cQASM parser and QX’s internals respectively.

21.3 Enabling QX’s depolarizing channel error model

While not exactly useful for this particular algorithm, we can use DQCsim to enable QX’s error model without having
to edit the cQASM file. The easiest way to do that is to add a line before sim.run() to form

with Simulator('test_output/dice.cq', 'qx') as sim:
sim.arb('back', 'qx', 'error', model='depolarizing_channel', error_probability=0.

→˓2)
results = sim.run()

This requires some explanation. The sim.arb() function (docs here) instructs DQCsim to send a so-called ArbCmd
(short for “arbitrary command”) to one of its plugins. In short, ArbCmds are DQCsim’s way to let its users commu-
nicate intent between plugins, without DQCsim itself needing to know what’s going on. DQCsim has no concept of
error models and the likes built-in, so we need to use ArbCmds to configure them.

Its first argument specifies the plugin that the ArbCmd is intended for, where ‘back’ is simply the default name for the
backend plugin. You could also use the integer 1 to select the second plugin from the front, or -1 to select the first
plugin from the back, as if it’s indexing a Python list.

The second and third argument specify the interface and operation identifiers respectively. The interface identifier
is usually just the name of the plugin, acting like a namespace or the name of a class, while the operation identifier
specifies what to do, acting as a function or method name. You’ll have to read the plugin documentation to see which
interface/operation pairs are supported. Usually these are listed in the form <interface>.<operation>, as if we’re
using a parameter named <operation> from a class named <interface>.

Note that the semantics of ArbCmds are defined such that plugins will happily ignore any ArbCmd specifying an
interface they don’t support, but will complain when they support the interface but don’t understand the operation.
More information and the rationale for this can be found here.

Any remaining arguments are interpreted as arguments. Specifically, keyword arguments are transformed into the keys
and values of a JSON object, in this case {“model”: “depolarizing_channel”, “error_probability”: 0.2}. Positional
arguments are interpreted as binary strings, but those are out of the scope of this tutorial (they’re not that relevant in
the Python world). Again, you’ll have to read the plugin documentation to see what arguments are expected.
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You won’t be able to see much in the result of the algorithm, because it was already purely random. But you may notice
that the log output of DQCsim now includes a Depolarizing channel model inserted . . . errors from the backend.

21.4 Using QuantumSim instead

More interesting in terms of DQCsim’s functionality is just how easy it is to change the simulator. All you have to do
to simulate using QuantumSim instead of QX is change the ‘qx’ in the Simulation constructor with ‘quantumsim’.

While QuantumSim is capable of much more, its DQCsim plugin currently only supports a qubit error model based
on t1/t2 times. The arb for that, along with the modified Simulator constructor, looks like this:

with Simulator('test_output/dice.cq', 'quantumsim') as sim:
sim.arb('back', 'quantumsim', 'error', t1=10.0, t2=20.0)
results = sim.run()

For that to have any merit whatsoever, you’ll have to modify the code such that we’re at least simulating OpenQL’s
scheduled output, because it’s based entirely on the timing of the circuit:

shutil.copyfile('test_output/dice_scheduled.qasm', 'test_output/dice.cq')

One thing the QuantumSim plugin does that the QX plugin doesn’t is report the actual probability of a qubit measure-
ment result. The results variable looks like this:

{
"qubits": [
{

"value": 0,
"raw": 0,
"average": 0.0,
"json": {"probability": 0.5},
"binary": [[0, 0, 0, 0, 0, 0, 224, 63]]

},
{

"value": 0,
"raw": 0,
"average": 0.0,
"json": {"probability": 0.5},
"binary": [[0, 0, 0, 0, 0, 0, 224, 63]]

},
{

"value": 0,
"raw": 0,
"average": 0.0,
"json": {"probability": 0.5},
"binary": [[0, 0, 0, 0, 0, 0, 224, 63]]

}
]

}

In particular, the “json” parameter lists data that the cQASM frontend received from the backend but doesn’t know
about, in this case showing that the probability for this outcome was exactly 0.5 for each of the three individual
measurements.
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21.5 Further reading

A more extensive Python tutorial for DQCsim can be found here. It (intentionally) does not depend on any of the
plugins and doesn’t use OpenQL, but hopefully the above illustrates that swapping out plugins is about the easiest
thing you can do with DQCsim.
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Developer Documentation

Documentation for the C++ source code is generated by Doxygen.

This is not intended as an API reference, as it includes internal stuff. If you just want to use OpenQL, it’s strongly
recommended to use it from Python, because OpenQL’s internals change a lot. Nevertheless, you can use it straight
from C++. To do that, first make sure you’re familiar with the Python API, then look at the examples folder of the
repository to see more or less how the API calls map, and only then look in the Doxygen documentation for details.

Indices and tables

• genindex

• modindex

• search
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